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The macroscale connectome is the brain’s anatomical network 
for global communication and multimodal integration of 
information between brain areas1. Topologically central con-

nections have been argued to provide benefits for global neural inte-
gration2 and healthy brain function3. Owing to their high biological 
cost, these central connections may also be prone to a wide range of 
disease mechanisms1.

Disease-associated alterations in structural and functional brain 
connectivity play a role in a wide range of psychiatric and neuro-
logical conditions (for a brief overview, see Supplementary Note). 
Potentially, these disconnectivity patterns converge across disorders 
to a substrate of connections that are generally vulnerable to disease 
effects. Such convergence is supported by observations that mul-
tiple neuropsychiatric disorders overlap in their involved functional 
neural circuits4, their genetic risk factors5 and their symptomatol-
ogy6. Meta-analyses of magnetic resonance imaging (MRI) studies 
have indicated high overlap in structural brain phenotypes and have 
suggested widespread anatomical and functional changes in densely 

connected ‘hub regions’7,8. So far, disease connectome investiga-
tions have been focused on the examination of brain disconnectiv-
ity in single or small sets of disorders, and lack power to identify 
cross-disorder biological patterns of white matter disconnectivity9. 
A cross-disorder disease-integrative approach provides opportuni-
ties to assess potential general vulnerability of connections in the 
human brain and gain insight into biological mechanisms shared 
across brain disorders9.

In this study, we performed a cross-disorder connectome analy-
sis, integrating connectivity data across 12 brain disorders, compris-
ing diffusion MRI data of in total 1,033 patients and 1,154 matched 
controls, across 8 psychiatric conditions (schizophrenia, bipolar 
disorder, attention deficit hyperactivity disorder (ADHD), autism 
spectrum disorder (ASD), major depressive disorder (MDD), obe-
sity, obsessive–compulsive disorder (OCD) and post-traumatic 
stress disorder (PTSD)) and 4 neurological disorders (Alzheimer’s 
disease (AD), its prodromal stage mild cognitive impairment 
(MCI), amyotrophic lateral sclerosis (ALS) and primary lateral  
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sclerosis (PLS)). A ‘cross-disorder involvement map’ was con-
structed by combining derived ‘disconnectivity maps’ across the 12 
conditions, identifying potential circuitry and network properties 
that play a general role in multiple disorders. We further combine 
cross-disorder involvement maps with results from network analy-
sis of the human connectome, anatomical data and functional map-
pings of brain regions and functions. We show that connections 
important for neural integration and cognitive brain function are 
disproportionately involved across multiple brain disorders.

Results
Cross-disorder involvement map. We examined diffusion MRI 
data of patients and controls across 12 brain disorders from pre-
viously published studies and cohorts (listed in Supplementary 
Method 1). Connectome maps were reconstructed by computing 
the level of connectivity between 219 distinct cortical brain regions 
(depicted by a subdivision of the Desikan–Killiany atlas, DK-219). 
Validation results using different parameter settings and differ-
ent subparcellations of the Desikan–Killiany atlas (for example, 
DK-114) are presented in the Supplementary Result 1. Patient–
control matching was performed per dataset (to ensure group-wise 
matching of age and sex; see Supplementary Method 2), and after 
quality control of the data (see Supplementary Method 2), 1,033 
patients and 1,154 matched controls were included for group analy-
sis. An overview of the demographics is provided in Table 1 and 
Supplementary Fig. 1. Differences in connectivity strength (mea-
sured by fractional anisotropy (FA)) between patients and controls 
were computed for all connections in each disorder separately, and 
then combined into disorder disconnectivity maps (Fig. 1a). In each 
disorder, a fixed number of connections (the top 15%) with the 
highest disconnectivity effects was selected as ‘disorder involved’, 
ensuring equal presence of all disorders in the final cross-disorder 
involvement map (validation of other settings (5–25%) and an alter-
native selection-free meta-analysis strategy yielded similar effects; 
see Supplementary Results 2 and 3). Disease maps were combined 
in a ‘cross-disorder disconnectivity involvement map’ depicting 
across all 12 disorders, per connection, the percentage of disorders 
in which that connection was found to be affected (Fig. 1b).

We next performed network-based statistics10 (NBS; see Methods 
for details), a method that identifies subnetworks of edge-wise 
effects. We examined the subnetworks of connections with high 
cross-disorder involvement, comparing the observed subnetwork 
size with a null distribution of random cross-disorder involvement 
observed when patients and controls are shuffled (10,000 permuta-
tions). NBS analysis revealed 4 significant clusters of connections 
with high cross-disorder involvement (among the set of connections 
involved in NBS threshold of >30%, >40% and >45% of the dis-
orders, all P < 0.05; Supplementary Fig. 2), with the largest subnet-
work containing 80 regions and 216 connections, including superior  
frontal, central, posterior and parietal regions (P < 0.001; Fig. 1e).

We continued by examining white matter vulnerability from a 
neuroanatomical perspective, examining cross-disorder involve-
ment of 38 major cortico-cortical white matter bundles parcellated 
according to the ICBM-DTI-81 white matter atlas (see Methods). 
Significantly high levels of cross-disorder involvement were observed 
in the body and splenium of the corpus callosum (body: P = 0.008; 
splenium: P < 0.001), superior corona radiata (left: P = 0.008; right: 
P < 0.001) and posterior corona radiata (left: P = 0.008; right: 
P = 0.015, one-sided permutation testing, 10,000 permutations, 
Bonferroni corrected for multiple testing across 38 tracts).

Region-wise cross-disorder involvement. Averaging cross- 
disorder involvement across connections of each cortical area  
provided a measure of region-wise cross-disorder involvement  
(Fig. 1d). We associated this region-wise cross-disorder involvement 
with cortical activation patterns associated with cognitive brain 

functions obtained from the NeuroSynth database. Region-wise 
cross-disorder involvement was shown to be positively associated 
with brain functions related to movement, attention and cogni-
tive control, including low-level functions such as ‘eye movement’ 
(Pearson’s r(217) = 0.31, P < 0.001, 95% CI = 0.18–0.42) and ‘motor’ 
(r(217) = 0.21, P = 0.025, 95% CI = 0.09–0.34), as well as high-level 
functions such as ‘cognitive control’ (r(217) = 0.28, P < 0.001, 95% 
CI = 0.15–0.40), ‘cued attention’ (r(217) = 0.28, P < 0.001, 95% 
CI = 0.16–0.40) and ‘visual attention’ (r(217) = 0.25, P = 0.004, 95% 
CI = 0.12–0.37) (Bonferroni corrected for multiple testing across  
24 functions; see Supplementary Fig. 3, and for a complete list of 
functions, see Supplementary Table 1).

Edge-wise centrality measures. We further investigated the vul-
nerability of connections and their contribution to local and global 
communication in the brain network. The topological role of con-
nections was assessed using four edge-wise centrality measures 
computed on a reference connectome that was based on high-reso-
lution data from the Human Connectome Project (HCP)11. We used 
HCP data to ensure that the computation of network measures was 
performed independently from any patient–control effects and any 
of the included disorder datasets. The contribution of a connec-
tion in global communication across the network was measured by 
means of ‘edge betweenness centrality’, which assesses the number 
of shortest topological paths through each connection. Connections 
with high betweenness centrality (top 25%, n = 290) were found to 
be significantly more involved across disorders than across subject-
label permuted cross-disorder involvement maps (d = 0.41, one-
sided permutation testing, 10,000 permutations, P < 0.001; Fig. 2; 
see Methods). By contrast, no significant effect was observed in 
connections with low betweenness centrality (lowest 25%, n = 290, 
P = 1.000). We further examined an extended definition of global 
network integration by means of ‘network communicability’, a 
metric that takes into account all possible communication paths 
between nodes in the network12. Brain connections that contrib-
ute the most to brain network communicability (top 25%, n = 290) 
again showed significantly higher cross-disorder involvement 
(d = 0.18, P = 0.009), suggesting disproportional disease vulner-
ability in connections central to global brain communication. By 
contrast, connections with a strong contribution to local network 
organization (measured by network clustering, n = 290) did not 
show a predisposition for cross-disorder involvement (P = 0.911). 
Finally, taking into account the projection distance of network con-
nections (that is, the physical length of connections in the human 
brain) also revealed higher cross-disorder involvement among 
spatially long connections (top 25%, >50 mm, n = 290) in com-
parison with permuted disconnectivity effects (d = 0.62, P < 0.001;  
see Methods).

Rich-club organization. We next investigated cross-disorder 
involvement in relation to hub and rich-club organization of the 
human brain network13. Densely connected hub regions in the 
human brain have been suggested to form a centrally connected 
‘rich club’ with high levels of interconnectivity between hub regions, 
together forming system circuitry that may act as a central back-
bone for global communication and integration of information14. 
Brain hubs were taken as the top 13% connected regions in the 
HCP reference connectome (Supplementary Fig. 4), and network 
connections were categorized into rich-club connections (7.6% of 
connections, n = 88), describing connections spanning between 
hub regions, feeder connections (27.7%, n = 321), describing 
connections spanning between hub and peripheral regions, and 
local connections (64.7%, n = 751), describing connections span-
ning between peripheral regions. Significantly disproportion-
ate cross-disorder involvement was observed among rich-club  
connections compared with local connections (d = 0.43, P < 0.001, 
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one-sided permutation testing, 10,000 permutations; Fig. 3) and 
with feeder connections (d = 0.28, P = 0.013). Feeder connections 
also showed higher cross-disorder involvement than local connec-
tions (d = 0.16, P = 0.009).

Global white matter. Widespread white matter changes in FA are 
often reported in psychiatric and neurological conditions and could 
result in a general pattern of reduced connectivity across the con-
nectome15–17. To verify that a cross-disorder vulnerability of central 
connections is relatively independent from such global white mat-
ter changes, we compared the level of cross-disorder involvement 
of central connections with a null distribution based on cross-dis-
order involvement maps obtained by subject-label permutation, in 
which, per disease and per dataset, the global connectivity strength 
distribution across patient and control groups was preserved (see 
Methods). Using this alternative null condition that controls for 
global changes in connectivity strength, connections with high 
betweenness centrality were again found to show significantly 
higher cross-disorder involvement (n = 290, d = 0.36, P < 0.001, 
one-sided permutation testing, 10,000 permutations), indicative 
of these effects to go beyond disease-related global FA changes. 
Furthermore, connections that contribute the most to brain network 
communicability also showed significantly higher cross-disorder 
involvement (n = 290, d = 0.16, P = 0.012). By contrast, connections 
important for local network integration showed no predisposition 
for cross-disorder involvement (n = 290, P = 0.900). Cross-disorder 
involvement was also higher among the spatially longest connec-
tions (n = 290, d = 0.55, P < 0.001), and central rich-club connec-
tions also showed significantly higher cross-disorder involvement 
(n = 88, d = 0.32, P = 0.003).

Psychiatric and neurological disorders. We further investigated 
connection vulnerability across the separate classes of psychiat-
ric and neurological disorders (see also Supplementary Result 4). 
Connections central to global integration showed high vulnerability 
in psychiatric disorders (Supplementary Fig. 5). Across neurologi-
cal disorders, vulnerability of central connections was restricted to 
spatially long connections and rich-club connections (the results are 
reported in Supplementary Result 4). Comparing the cross-disorder 
involvement of central connections of psychiatric and neurological 
disorders suggested that cross-psychiatric disconnectivity patterns 
converge more strongly to central connections than disconnectiv-
ity patterns in neurological disorders (Supplementary Fig. 6 and 
Supplementary Result 4). Stronger convergence in psychiatric disor-
ders than in neurological disorders was further suggested by results 
from NBS analysis, which identified subnetworks with high cross-
disorder involvement in psychiatric disorders but not in neurologi-
cal disorders (Supplementary Result 4 and Supplementary Fig. 5).

Cross-disorder hyperconnectivity. We further explored patterns 
of potential ‘disease-related increases in connectivity’ in patients 
compared with controls, as a reflection of cross-disorder hyper-
connectivity. Using the same procedure as for the cross-disorder 
disconnectivity involvement map, we constructed a cross-disorder 
hyperconnectivity map describing for each connection the percent-
age of disorders in which a connection was found to show increased 
connectivity (that is, higher FA in patients than in controls). NBS anal-
ysis revealed 2 subnetworks with high cross-disorder involvement  
(at NBS thresholds of >30% and >40%, one-sided permutation 
testing, 10,000 permutations), with the largest significant subnet-
work including 58 regions and 132 connections. This network was 

Table 1 | Demographics after data quality control and matching

Dataset Number 
of 
controls

Number 
of 
patients

Age Sex P valueb Refs.

Control mean 
(s.d.)

Patient mean 
(s.d.)

P valuea Control male/
female (%/%)

Patient male/female 
(%/%)

ADHD I 14 33 12.07 (2.48) 11.15 (2.54) 0.27 13/1 (92.9/7.1) 27/6 (81.8/18.2) 0.33 48

ALS 45 45 50.99 (19.10) 51.98 (15.98) 0.79 37/8 (82.2/17.8) 33/12 (73.3/26.7) 0.31 73

Alzheimer’s 
disease I

20 20 61.65 (7.74) 66.00 (5.62) 0.05 8/12 (40.0/60.0) 11/9 (55.0/45.0) 0.34 53,74

Alzheimer’s 
disease II

16 36 72.24 (4.54) 75.14 (8.90) 0.23 6/10 (37.5/62.5) 21/15 (58.3/41.7) 0.17 ADNI

ASD I 16 32 12.62 (1.86) 12.10 (2.48) 0.47 14/2 (87.5/12.5) 27/5 (84.4/15.6) 0.77 48

ASD II 22 32 13.37 (2.99) 12.97 (3.25) 0.65 20/2 (90.9/9.1) 25/7 (78.1/21.9) 0.22 ABIDE II

ASD III 14 13 16.34 (3.31) 14.44 (3.52) 0.18 14/0 (100.0/0.0) 13/0 (100.0/0.0) 1.00 ABIDE II

ASD IV 28 28 39.36 (15.04) 38.04 (15.78) 0.75 28/0 (100.0/0.0) 28/0 (100.0/0.0) 1.00 ABIDE II

Bipolar disorder 82 82 45.18 (14.62) 45.86 (13.41) 0.76 42/40 (51.2/48.8) 49/33 (59.8/40.2) 0.27 47

MCI I 28 28 57.89 (12.22) 62.79 (7.81) 0.09 15/13 (53.6/46.4) 19/9 (67.9/32.1) 0.27 53,74

MCI II 17 95 72.80 (6.74) 72.48 (7.22) 0.87 8/9 (47.1/52.9) 59/36 (62.1/37.9) 0.24 ADNI

MDD 476 211 37.20 (11.78) 36.93 (12.15) 0.78 209/267 (43.9/56.1) 104/107 (49.3/50.7) 0.19 49

Obesity 32 29 23.53 (8.66) 26.45 (10.73) 0.25 15/17 (46.9/53.1) 10/19 (34.5/65.5) 0.33 50

OCD 42 36 31.81 (8.19) 31.50 (9.40) 0.88 18/24 (42.9/57.1) 14/22 (38.9/61.1) 0.72 51

PLS 32 32 59.18 (14.60) 59.93 (9.70) 0.81 19/13 (59.4/40.6) 17/15 (53.1/46.9) 0.61 73

PTSD I 25 46 36.92 (10.61) 37.66 (9.46) 0.77 25/0 (100.0/0.0) 46/0 (100.0/0.0) 1.00 52

PTSD II 40 40 69.86 (4.50) 68.04 (3.86) 0.06 40/0 (100.0/0.0) 40/0 (100.0/0.0) 1.00 DOD ADNI

Schizophrenia I 106 106 29.52 (7.63) 29.44 (7.41) 0.94 71/35 (67.0/33.0) 82/24 (77.4/22.6) 0.09 46

Schizophrenia II 24 24 31.79 (7.50) 31.21 (3.55) 0.74 17/7 (70.8/29.2) 19/5 (79.2/20.8) 0.50 45

Schizophrenia III 75 65 37.73 (11.97) 38.43 (13.47) 0.75 57/18 (76.0/24.0) 51/14 (78.5/21.5) 0.73 COBRE
aIndependent-samples two-tailed t-test. bTwo-sided chi-squared test.
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left lateralized and included connections of the anterior cingulate 
gyrus, orbital, medial, inferior and medial frontal regions and  
superior temporal regions (P = 0.026; Fig. 4). Subsequent neuro-
anatomical mapping of cross-disorder hyperconnectivity did not  
reveal a significant concentration of cross-disorder involvement to 
any of the white matter bundles (all P > 0.05, one-sided permuta-
tion testing, 10,000 permutations, Bonferroni corrected for multiple 
testing across 38 tracts). Furthermore, functional mapping showed 
no significant positive correlations between region-wise cross- 
disorder involvement and functional mappings (all P > 0.05, 
Pearson’s correlation, Bonferroni corrected for multiple testing 
across 24 functions).

We next tested whether peripheral connections possibly showed 
higher cross-disorder involvement in hyperconnectivity. We found sig-
nificantly higher cross-disorder hyperconnectivity than subject-label 
permuted cross-disorder hyperconnectivity maps in connections with 
low betweenness centrality (lowest 25%, n = 290, d = 0.20, P = 0.002) 
and connections with a relatively low contribution to communicabil-
ity (n = 290, d = 0.33, P < 0.001). Connections with low contribution 
to clustering did not show a particularly higher cross-disorder hyper-
connectivity (P = 0.132). Furthermore, higher cross-disorder hyper-
connectivity was found to be also particularly concentrated along 
short-range connections (<8.3 mm, n = 290, d = 0.27, P < 0.001). 
Local connections (n = 751) that displayed a peripheral role in the 
rich-club organization showed higher cross-disorder hyperconnectiv-
ity than more central feeder connections (n = 321, d = 0.19, P = 0.003) 
or rich-club connections (n = 88, d = 0.29, P = 0.004).

Individual disorder maps. To verify that the observed results were 
not driven by the disconnectivity profile of any included disorder, we 
performed a leave-one-disorder-out analysis in which we repeated 
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values were compared with average cross-disorder involvement of central 
connections in subject-label permuted cross-disorder involvement 
maps. Connections important for global topological integration (edge 
betweenness centrality: d = 0.41, one-sided permutation testing, 10,000 
permutations, P < 0.001; and communicability: d = 0.18, P = 0.009) and 
spatial integration (long-distance connections: d = 0.62, P < 0.001) showed 
significantly higher cross-disorder involvement levels than expected for 
randomly distributed disease effects (indicated by an asterisk, *P < 0.05). 
Connections important for local clustering did not show higher than 
expected cross-disorder involvement (P = 0.911). Boxes indicate the interval 
between the 25th and 75th percentiles (quartile 1 (q1) and q3), whiskers 
indicate the interval between q1 − 1.5 × (q3−q1) and q3 + 1.5 × (q3−q1),  
the white lines indicate median values and the white circles indicate  
mean values.
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our analyses leaving out one disorder at a time (see Supplementary 
Result 5). This analysis confirmed high vulnerability of connections 
that are important for global integration and higher cross-disorder 
involvement of rich-club connections than of feeder and local con-
nections (see Supplementary Result 5) and ruled out that the effects 
were mainly driven by one specific disorder. This generality was 
further underscored by the observation that at most 3 of the 12 dis-
order disconnectivity maps did not contribute to the vulnerability of 
central connections (Supplementary Fig. 7).

The leave-one-disorder-out analysis further provided an oppor-
tunity to quantify the overlap of disorder disconnectivity maps and 
the cross-disorder involvement map. We tested the distribution of 
disconnectivity for each disorder between disorder-specific con-
nections (affected in 0, 1 or 2 disorders of the 11 other disorders, 
that is, excluding the examined disorder) and connections com-
monly affected (in ≥4 disorders) (Fig. 5). Schizophrenia (d = 0.77, 
P < 0.001, two-sided permutation testing, 10,000 permutations, 
Bonferroni corrected for multiple testing across 12 disorders), 
PLS (d = 0.71, P < 0.001), ALS (d = 0.71, P < 0.001), bipolar disor-
der (d = 0.42, P = 0.001), obesity (d = 0.33, P = 0.019), AD (d = 0.31, 
P = 0.040) and ASD (d = 0.31, P = 0.035) showed significantly 
higher disconnectivity in commonly affected connections. MCI 
(P = 0.073), ADHD (P = 0.193), PTSD (P = 1), MDD (P = 0.767) and 
OCD (P = 0.152) did not show significant differences. The increased 
disconnectivity of commonly vulnerable connections in 7 out of 12 
disorders provides further evidence that the cross-disorder involve-
ment map incorporates disconnectivity patterns that are relatively 
general across the majority of brain disorders.

Variation analyses. To ensure our results were generalizable and 
independent of specific parameter settings, reconstruction method 
or applied analysis, we repeated our analyses with various alterna-
tive research design choices. We repeated our analyses using dif-
ferent analysis parameters for the percentage of disorder-involved 
connections (Supplementary Result 2 and Supplementary Fig. 8),  
the percentage of central connections (Supplementary Result 6 
and Supplementary Fig. 9) and the percentage of hub regions 
(Supplementary Result 7 and Supplementary Fig. 10). Different anal-
ysis strategies were tested, including a second meta-analysis method 
that averaged weighted disconnectivity effects across disorders 
(Supplementary Result 3 and Supplementary Fig. 11). The group 
connectome map was based on group thresholding that reduced 
the number of included false-positive connections, but could over-
represent short-range connections in the group connectome map18. 
Thus, we also repeated our analyses using an alternative grouping 
method that preserved connection length and ensured a balanced 
sampling of short-range and long-range connections in the group 
connectome map19 (see Supplementary Result 8). To further ensure 
that our findings were not influenced by connection prevalence 
(that is, the number of times a connection could be reconstructed 
in the population, reflecting study power), we verified our results 
examining the subset of most highly consistent connections (see 
Supplementary Result 9).

Discussion
Our findings suggest that connections central to network integra-
tion and communication in the human brain are potential hotspots 
for white matter disconnectivity across multiple brain disorders. 
Cross-disorder disconnectivity was examined in 1,033 patients and 
1,154 matched controls across a range of 8 psychiatric and 4 neuro-
logical disorders and suggests the common involvement of central 
connections in multiple brain disorders. We note that our findings 
do not suggest that all disorders involve changes to central connec-
tions of the brain network, but that central connections are poten-
tial common players across multiple disorders, with a potential high 
vulnerability of these connections to a wide range of disease pro-
cesses. Our cross-disorder findings provide three lines of evidence 
to support such a cross-disorder vulnerability of central connec-
tions of the human brain network.

First, edge-wise network measures revealed connections critical 
for network efficiency and communicability to display high cross-
disorder involvement (Fig. 2). This result extends earlier reports of 
affected efficiency of structural networks in, for example, depres-
sion16 and AD, schizophrenia, multiple sclerosis and ALS (for a 
review, see ref. 17), suggesting that these effects are perhaps not all 
disease specific, but are potentially more general to brain disor-
ders than previously reported. Furthermore, our results stress the 
hypothesized importance of efficient integration of information 
for healthy brain function1, with disruptions in central connections 
potentially leading to disproportional effects in brain dysfunction20.

A second line of evidence for the vulnerability of central connec-
tions is the observation of high cross-disorder involvement among 
connections characterized by long physical distances (Fig. 2).  
A longer projection distance does not necessarily imply topological 
importance, but following a hypothesized trade-off in brain orga-
nization between minimizing wiring cost and topological integra-
tion, connections spanning long physical distances are expected to 
be extraordinarily beneficial to network topology1. This elevated 
vulnerability of physically long connections is in line with studies 
reporting affected fibre tracts such as the superior and inferior lon-
gitudinal fasciculus in, for example, ADHD21, ASD22, OCD23 and 
schizophrenia24. Post-hoc analysis showed that high cross-disorder 
involvement of spatially long connections is at least partly driven by 
a centralization of effects among interhemispheric connections (see 
Supplementary Result 10).
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connections (n = 751, d = 0.43, P < 0.001, one-sided permutation testing, 
10,000 permutations) and higher than observed in the set of feeder 
connections (n = 321, d = 0.28, P = 0.013). Significant differences are 
indicated by an asterisk (*P < 0.05). Boxes indicate the interval between 
the 25th and 75th percentiles (q1 and q3), whiskers indicate the interval 
between q1 − 1.5 × (q3−q1) and q3 + 1.5 × (q3−q1), the white lines indicate 
median values and the white circles indicate mean values. b, Hub regions 
(top 13% highest degree regions, n = 29 regions) are coloured in red.  
c, Schematic representation of the human reference connectome  
with rich-club connections (red), feeder connections (orange) and local 
connections (yellow).
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Third, rich-club connections are found to display significantly 
higher cross-disorder involvement than are connections of periph-
eral regions (Fig. 3). This observation is in line with studies show-
ing the involvement of the rich club in several disorders, such as 
schizophrenia25, ASD26, Huntington’s disease27 and AD16, and stud-
ies reporting on widespread overlap in grey matter and resting-state 
functional abnormalities across disorders in central hub regions7,8. 
We conclude from this that connections central to the global inte-
gration of information display an elevated vulnerability across a 
wide range of mental disorders.

The observed cross-disorder involvement of central connections 
is argued to result from an accumulation of different disease mecha-
nisms across disorders28. A potential heterogeneous aetiology of the 
vulnerability of central connections is in line with the interpreta-
tion that our results reflect small-to-medium effect sizes29 and is 
supported by the observation that central connections are involved 
in both psychiatric and neurological disorders, but with different 
impact (Supplementary Fig. 6). Several biological mechanisms and 
disease pathways have been proposed to contribute to this general 
vulnerability of central connections. Central regions and connec-
tions have been argued to be biologically expensive, characterized 
by complex cytoarchitecture30, high metabolism1 and high neuronal 
activity31. This high biological cost has been argued to cause a gen-
eral vulnerability to a wide range of disease processes, such as reduc-
tions in the supply of oxygen or other metabolic resources32. Central 
connections may also display a high cross-disorder involvement as a 
result of their topological centrality and associated risk to propagating  

disease processes28. Furthermore, long-range central connections 
may be particularly vulnerable to focal white matter degeneration, 
with the chance of a connection being affected by random white 
matter lesions being proportional to its physical length, resulting in 
a higher predisposition of long-range central connections to gen-
eral white matter atrophy than short-range connections. Central 
connections of the brain have been noted to display a prolonged 
development33, which may further increase their general vulnerabil-
ity with these connections at increased risk to late neurodevelop-
mental stress, substance use and/or dysregulation of, for example, 
hypothalamic–pituitary–adrenal axis function34. Alternatively, a 
high vulnerability of central connections might also relate to overlap 
in symptomatology across disorders. We observed that connections 
with high cross-disorder involvement connect regions involved in 
attention and cognitive control, which are cognitive brain functions 
commonly affected in a wide range of brain disorders35.

This cross-disorder connectome study complements previous 
meta-analyses that localized cross-disorder vulnerability in other 
brain modalities, such as functional hypoactivation and hyperac-
tivation and grey matter abnormalities36. In line with our observed 
vulnerability of central connections, cross-disorder abnormali-
ties in resting-state functional connectivity have been reported in 
brain regions important for neural integration8. Meta-analyses have  
further associated hyperconnectivity between the default mode  
network and executive networks with transdiagnostic factors37, 
results that overlap with the here observed cross-disorder vulner-
ability of white matter tracts involved in cognitive control.
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Integrating cross-disorder findings from multiple modalities 
provides the opportunity to gain further insight into the biologi-
cal mechanisms that overlap and dissociate across disorders38. An 
exploratory comparison of the overlap and dissociation between 
previously reported7 grey matter effects and white matter disease 

involvement revealed the left caudal middle frontal region, left 
superior frontal region and left cuneus to show high cross-disorder 
involvement in both white matter disconnectivity as well as grey 
matter abnormalities (Fig. 6 and Supplementary Result 11). By 
contrast, regions such as the left superior frontal, right paracentral, 
right superior frontal and right medial orbitofrontal cortex tend 
to show high white matter cross-disorder disconnectivity but low 
general vulnerability to grey matter abnormalities, whereas the left 
fusiform area and left caudal anterior cingulate cortex tend to show 
high grey matter vulnerability but low cross-disorder disconnectiv-
ity involvement. The differential involvement of brain regions in 
both types of cross-disorder involvement suggests a complex inter-
action between grey and white matter cross-disorder disease path-
ways. Further investigation of cross-disorder mechanisms that are 
associated with either grey or white matter abnormalities provides 
a promising avenue to identify explicit cross-disorder disease path-
ways that are linked with specific brain phenotype outcomes.

Genetics and heritability studies offer the potential to gain fur-
ther understanding of the pathology underlying cross-disorder 
disconnectivity. Shared genetic aetiology is observed across many 
psychiatric and neurological disorders39, with shared genetic risk 
factors providing converging evidence for common underlying 
biological processes across brain disorders40. Examination of struc-
tural disconnectivity and genetic information in a multi-modal and 
cross-disorder approach may further identify cross-disorder and 
disorder-specific biological pathways41.

The observation of overlapping disconnectivity patterns across 
brain disorders is in agreement with the hypothesis that brain dis-
orders are interrelated40 and prompts a careful consideration of 
disease disconnectivity findings. Disconnectivity findings of single-
disorder connectome examinations are often interpreted as disor-
der-specific disconnectivity effects. Such misattribution is perhaps 
most problematic in the development of biomarkers for brain disor-
ders based on disconnectivity fingerprints, where it could result in 
overestimation of the disorder specificity of a presented biomarker. 
Our findings argue for a cross-disorder approach to connectome 
disease studies and, specifically, the development of biomarkers that 
can disentangle disorder-shared and disorder-specific disconnec-
tivity effects.

Several methodological issues have to be considered when inter-
preting our findings. While combining data from multiple studies 
may implicitly account for real-world heterogeneity and improve 
generalizability of observed results42, it overlooks disorder–age 
interactions and it reduces statistical power as a result of inter-study 
heterogeneity in diagnoses, demographics, scanner and MRI acqui-
sition protocols. We are aware of this limitation and aimed to match 
for age effects and maximize statistical power by directly comparing 
patients and matched controls within each study first, before com-
bining information across the 12 disorders. Second, disorder dis-
connectivity fingerprints were based on structural brain networks 
obtained by diffusion-based MRI, with white matter microstruc-
tural integrity assessed by means of the metric of FA43. However, FA 
is only an indirect marker of the microscale architecture of white 
matter tissue. Diffusion-weighted imaging (DWI) has recognized 
limitations with respect to the reconstruction of complex fibres and 
connectome mapping44, which might result in underestimation of 
disconnectivity effects within and across disorders. Third, our con-
clusions are based on effects observed across 12 disorders, and it 
remains unclear whether our conclusions could be generalized  
to an even wider range of brain disorders. To verify that the results 
were not driven by a single disorder, we performed a leave-one-
disorder-out validation analysis in which all analyses were repeated 
leaving out one disorder at a time. Moreover, we repeated all analy-
ses using a strict set of brain disorders, excluding MCI and obesity, 
which showed similar results (see Supplementary Result 12). We 
also examined neurological and psychiatric disorders separately, 
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Fig. 5 | Overlap disorder disconnectivity with the cross-disorder 
involvement map. For each disorder, the (weighted) disconnectivity of 
connections was compared between connections commonly affected 
across the 11 other disorders (affected in ≥4 disorders) and more disorder-
specific connections (affected in 0, 1 or 2 disorders). Schizophrenia 
(d = 0.77, P < 0.001, two-sided permutation testing, 10,000 permutations, 
Bonferroni corrected for multiple testing across 12 disorders), PLS  
(d = 0.71, P < 0.001), ALS (d = 0.71, P < 0.001), bipolar disorder (d = 0.42, 
P = 0.001), obesity (d = 0.33, P = 0.019), AD (d = 0.31, P = 0.040) and  
ASD (d = 0.31, P = 0.035) showed significantly higher disconnectivity  
in commonly affected connections. MCI (P = 0.073), ADHD (P = 0.193), 
PTSD (P = 1), MDD (P = 0. 767) and OCD (P = 0.152) did not show 
significant differences.
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confirming vulnerability of central connections in both classes of 
disorders. Investigating potential further clustering of disorders 
within these two large classes of disorders on the basis of disor-
der disconnectivity patterns may provide further insights in more 
detailed biological relationships between and across disorders.

Our cross-disorder comparative findings suggest shared con-
nectome pathology across brain disorders, with central connections 
important for global communication and neural integration form-
ing potential ‘hotspots of disconnectivity’ in the human brain. Our 
cross-disorder comparison showed varying involvement of central 
connections across disorders, suggesting that each disorder may 
include a balance between disorder-specific and disorder-shared 
disconnectivity. Future examinations untangling disconnectivity 
effects will provide better understanding of which brain altera-
tions are general and which effects are unique for brain disorders,  
providing opportunities to develop MRI-based biomarkers for 
mental disorders.

Methods
Studies and subjects. Diffusion MRI data of 2,681 patients and controls of 12 
disorders were included. All participants or legal tutors (in case of children under 
18 years of age) provided written informed consent, and all studies were approved 
by their local ethics committee for research in humans (see Supplementary  
Method 1). Data included DWI data of previously reported studies on 
schizophrenia (three datasets available: sets I, II and III) (COBRE, ref. 45 and ref. 46),  
bipolar disorder47, ADHD48, ASD (four datasets) (ABIDE II and the study of 
van Belle et al.48), MDD49, obesity50, OCD51, PTSD (two datasets: set I and set 
II) (Department of Defense Alzheimer’s Disease Neuroimaging Initiative (DOD 
ADNI), adni.loni.usc.edu and ref. 52), and four neurological disorders, AD 
(two datasets: set I and set II) (ADNI and ref. 53), MCI (two datasets: set I and 
set II) (ADNI and ref. 53), ALS54 and PLS54. Supplementary Fig. 1 provides an 
overview of all the data included and a summary is provided in Table 1. Further 
details including MRI acquisition protocols and demographics are outlined in 
Supplementary Method 1 and Supplementary Table 2. Within each dataset, patients 
and controls were matched on age, sex, scanner settings and, where possible, other 
demographics (the procedure is described in Supplementary Method 2).

Data processing. DWI tractography. Data preprocessing of diffusion-weighted and 
T1-weighted images of individuals included the following steps: the anatomical 
T1-weighted image was parcellated into 219 distinct cortical regions (111 left 
hemispheric and 108 right hemispheric regions) according to a subdivision 
of FreeSurfer’s Desikan–Killiany atlas55 using FreeSurfer56. This subdivision 
provided high methodological robustness while remaining sensitive to changes 
in connectivity55. Underscoring the influence of parcellation and network size 
on network measures57, we repeated analyses using a different subparcellation of 
the Desikan–Killiany atlas (DK-114, 114 regions; data presented in the variation 

analyses section and Supplementary Result 1). Second, the individual parcellation 
map was co-registered to the DWI data using an affine transformation mapping of 
the T1-weighted image to the diffusion-weighted image. Third, diffusion-weighted 
images were corrected for eddy current distortions and head motion using the 
FMRIB Software Library58. If reversed-phase encoding data were available (the 
datasets are listed in Supplementary Table 2), susceptibility-induced distortions 
were estimated and incorporated in the preprocessing59. Fourth, a tensor was fitted 
to the diffusion signals in each voxel using a robust tensor fitting algorithm60 and 
subsequently FA was derived61. Given the mostly clinical diffusion MRI protocols 
used for data acquisition, simple deterministic tensor reconstruction (diffusion 
tensor imaging) (compared with more advanced diffusion profile reconstruction 
methods) was used to minimize the potential influence of false positives on 
network reconstruction and subsequent computation of network metrics18. This 
relatively simple reconstruction of the diffusion signal is a limitation of our cross-
disorder examination, potentially leading to incomplete reconstruction of complex 
fibre pathways and an underestimation of cross-disorder disease effects62. Fifth, 
white matter pathways were reconstructed using fibre assignment by continuous 
tracking (FACT)63, with streamline reconstruction starting from eight seeds in 
every cerebral white matter voxel. Fibre tracking was continued until a streamline 
showed high curvature (>45°), exited the brain mask or when a streamline entered 
a voxel with low FA (<0.1). The mean FA value of a streamline was computed as 
the weighted average FA value over all voxels that a streamline passed.

Network reconstruction. For each individual dataset, reconstructed streamlines 
and cortical parcellation were combined into a weighted network. The 219 
cortical areas were chosen as nodes in the network, and 2 regions were considered 
connected if at least 1 reconstructed streamline was found to touch both cortical 
regions. The weight of connections was taken as the mean FA of streamlines 
involved43. An overview of FA distribution per dataset and patient and control 
group is provided in Supplementary Fig. 12 and Supplementary Table 3.

Cross-disorder analysis. Cross-disorder examination of disorder-related 
disconnectivity was performed in two steps. Patient and control data were first 
compared within each dataset (in contrast to the alternative of pooling all data  
into one large dataset) to ensure that patients and controls were matched on age, 
sex and other demographics and scanner settings. This comparison provided  
for each disorder a disconnectivity map quantifying the differences in connectivity 
strength between patients and matched controls. Second, patient–control  
matched disorder disconnectivity maps were combined across the 12 disorders to 
determine the distribution of disconnectivity effects across network connections 
of the brain. This two-step approach optimized comparability of data across 
studies with different MRI acquisition protocols. In what follows, we describe 
this procedure in more detail, including the construction of the disorder 
disconnectivity maps and the cross-disorder involvement map, followed by the 
performed statistical analyses.

Step 1: disorder disconnectivity map. Per disorder, a disconnectivity map was 
constructed by assessing the between-group difference in FA of connections 
between patients and controls quantified by a Student’s t-test statistic. As such, we 
tested for lowered FA connectivity strength in the patient group compared with 
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the controls. To incorporate possible differences in degrees of freedom across 
connections, t-test statistics were transformed to z-scores derived from the P values 
using the equivalent area under the curve.

For the disorders ASD, PTSD, schizophrenia, AD and MCI, for which multiple 
datasets were available, a disorder disconnectivity map was calculated per dataset 
and then combined into an average disorder disconnectivity map using Stouffer’s 
method for combining independent tests by averaging the z-scores in the disorder 
disconnectivity maps across datasets weighted proportional to the effective sample 
size of the dataset64.

In total, this resulted in a disorder disconnectivity map for each of the 
12 included brain disorders. Next, the top 15% connections with the highest 
z-scores were selected as the set of most involved connections in that disorder, 
performing, per disorder, a proportional thresholding on the disorder-specific 
disconnectivity map with a density of 15%65. Results using 5%, 10%, 20% or 25% 
involved connections are presented in Supplementary Result 2. Results using a 
second selection-free meta-analysis method in which connection involvement was 
weighted by the full z-scores in the disorder disconnectivity maps are presented in 
Supplementary Result 3.

Step 2: cross-disorder involvement map. The 12 thresholded and patient–control 
matched disorder disconnectivity maps were combined into a total cross-disorder 
involvement map. To maximize comparability across studies and to avoid any 
potential bias to one of the included datasets, connection effects were included 
for those connections present in a reference connectome map based on high-
quality data of the HCP (500 Subjects Release of the HCP)66 (see Supplementary 
Method 3 for details on the HCP group connectome reconstruction). A cross-
disorder involvement map was formed by adding up all thresholded disorder 
disconnectivity maps and dividing it by the number of disorders in which each 
connection was present, thus computing per connection the percentage of 
disorders in which this connection was involved.

White matter bundles. The Johns Hopkins University ICBM-DTI-81 white matter 
atlas as included in FSL was used as a segmentation of 48 white matter bundles 
in standard MNI space67. The extent to which each reconstructed connection 
overlapped with a bundle was computed as a percentage of overlap based on 
high-resolution tractography of subjects in the reference connectome dataset. 
The volume (that is, the number of voxels) shared between a connection and a 
bundle was computed, divided by the total volume of the bundle in each subject 
and averaged across subjects, providing the percentage of overlap between a 
connection and a bundle. Cross-disorder involvement of white matter bundles 
was then calculated as the sum of cross-disorder involvement over all connections 
weighted by this percentage of overlap. Ten bundles showed no overlap with 
any of the reconstructed connections and were excluded from the analysis 
(See Supplementary Table 4 for an overview of the 38 included white matter 
bundles). This procedure was repeated for the 10,000 randomized cross-disorder 
involvement maps, providing for each white matter bundle a null model of cross-
disorder involvement under subject-label permutation. Significance was assessed 
using permutation testing (Bonferroni correction was applied to correct for 
multiple testing across 38 white matter bundles).

Region-wise cross-disorder involvement. Region-wise cross-disorder involvement 
was derived by averaging cross-disorder involvement of connections adjacent to 
each region. Functional correlates of high regional cross-disorder involvement 
were examined using brain function maps obtained from the NeuroSynth database 
(www.neurosynth.org)68. The NeuroSynth database provides statistical mapping in 
standard MNI space of neural and cognitive states, named ‘terms’, based on a meta-
analysis of literature. For every term, we downloaded the association-test map 
that displays the preferential association of voxels with the term. A regional term 
involvement map was formed by combining the association-test statistics across all 
voxels of each brain region using sample size-based meta-analysis69. We examined 
24 groupings of 99 terms that described distinct interpretable brain functions70. 
The associated regional brain function involvement maps were computed as the 
number of terms per brain function that exceeded a z-score threshold of 2.6 in 
a region. Next, the region-wise cross-disorder involvement map was correlated 
with all regional brain function maps to identify which functions had similar 
regional distributions as the cross-disorder involvement map (normality of the 
data distributions was not formally tested and Bonferroni correction was applied to 
correct for multiple testing across 24 functions).

Network analysis. The centrality of connections in the network structure was 
considered with respect to rich-club organization, edge-wise global and local 
network measures and physical wiring length. Metrics were computed on the 
reference connectome to ensure independence of the examined datasets.

Global network organization. Global network integration was examined from 
the perspective of the ease of communication between nodes in the network. 
Centrality of connections with respect to the shortest topological paths in the 
network was measured by counting the number of shortest topological paths 
through each network connection using the metric of edge betweenness71.  

Network integration was considered by examining the metric of network 
communicability, measuring all possible walks between nodes12. The contribution 
of connections to communicability was assessed by edge removal statistics72. The 
removal effect of each connection on network communicability was quantified 
as the difference (in terms of percentage) between the network communicability 
before and after the removal of a connection.

Local network organization. The role of network connections in local network 
organization was assessed through the contribution of each connection to network 
clustering71. The removal effect of each connection on global network clustering 
was quantified as the difference (that is, the percentage of change) in global 
clustering before and after the removal of the connection.

Spatial embedding. The projection length of each connection was calculated as the 
average physical length of a connection in the HCP reference dataset.

Rich-club organization. Central connections were identified with respect to the 
rich-club organization of the reference network, describing the total collective 
of high-degree hub regions and their connections13. The regional degree was 
computed on the basis of the reference connectome to avoid any potential data-
driven bias in any class of connections towards the included datasets. Hub regions 
were selected as regions with a degree above 14 (top 13% regions with the highest 
regional degree, 29 regions; Supplementary Fig. 4 and listed in Supplementary 
Table 5) in line with previous hub definitions2. Network connections were 
subsequently categorized into rich-club connections, describing connections 
spanning between hub regions, feeder connections, describing connections 
spanning between hub and peripheral regions, or local connections, describing 
connections between peripheral regions2. Analyses were repeated with connection 
classes derived from a smaller and larger set of hub regions, revealing consistent 
results (see Supplementary Result 6).

Statistical analysis. Cross-disorder involvement. Significant subnetworks in the 
brain with increased cross-disorder involvement levels were identified using NBS10. 
The cross-disorder involvement map was binarized by including connections with 
cross-disorder involvement percentages above a specified NBS threshold. Multiple 
NBS thresholds (0%, 5%, …, 100%) were considered, capturing the trade-off 
between specificity and sensitivity of the NBS analysis. The number of connections 
in the greatest component of the thresholded network was counted. Significance 
of this cluster was assessed using permutation testing by comparison with the 
distribution of greatest component sizes in a null condition in which disease  
effects were randomized. For this, for each permutation, a cross-disorder 
involvement map was calculated on a permuted subject sample in which subject 
labels (that is, controls and patients) were randomly reassigned (keeping patient 
and control group sizes intact). Ten thousand permutations were examined and  
the percentage of the permutations in which the greatest component was larger  
or equal to the observed greatest component was assigned as a P value to the 
observed cross-disorder involvement. We used an alpha level of 0.05 for this and 
all other tests.

Edge-wise centrality measures. The 25% most central connections selected by 
global network integration, local network integration and the spatial embedding 
were examined. In the variation analyses, other reasonable percentages (5%, 
10%, …, 45%) for selecting central connections were also examined and verified 
to show similar results. Cross-disorder involvement levels were compared 
with the levels expected when disconnectivity was randomly distributed using 
permutation testing, to verify independence of our results from connection 
properties such as connection prevalence or group average connection strength. 
For each permutation, subject labels were randomly reassigned and cross-disorder 
involvement maps were calculated using the permuted subject labelling. Ten 
thousand permutations were computed and average cross-disorder involvement 
levels of the subsets of central connections were calculated for each permutation. 
On the basis of this null distribution, the original effect was assigned a P value as 
the percentage of permutations in which the cross-disorder involvement was equal 
to or exceeded the observed cross-disorder involvement. Standardized effect sizes 
were measured by Cohen’s d approximated as the difference between the observed 
average cross-disorder involvement of central connections and the average cross-
disorder involvement of central connections in subject-label permuted cross-
disorder involvement maps divided by the standard deviation of the observed 
cross-disorder involvement of central connections.

Rich-club organization. Differences in mean cross-disorder involvement between 
rich-club and feeder, rich-club and local, and feeder and local connection classes 
were statistically assessed using permutation testing (10,000 permutations). In 
each permutation, connection class labels were randomly shuffled and the mean 
cross-disorder involvement of the classes was computed over the permuted 
connections. Differences in cross-disorder involvement between connection 
classes were computed for all permutations. The observed difference in cross-
disorder involvement between two connection classes was assigned a P value by 
computing the percentage of permutations in which the difference between the two 
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connection classes was equal to or exceeded the observed difference. Standardized 
effect sizes were approximated using Cohen’s d calculated as the difference between 
the average cross-disorder involvement of two connection classes divided by the 
pooled standard deviation.

Global white matter. Additional permutation testing was performed to verify 
independence of our results from widespread white matter differences in FA. For 
each subject, global FA was computed as the total FA strength of all connections. 
Next, subjects were classified into 10 global FA groups, group 1 with global FA in 
the interval (0, 0.1), group 2 with global FA in the interval (0.1, 0.2), and so on. For 
permutation testing, subject labels were permuted within datasets, but now under 
the constraint of only allowing switching patient and control labels of subjects 
assigned to the same global FA bin. As such, the resulting global FA distribution 
of permuted patient and control groups was kept similar to the original global FA 
distributions (and therewith also potential between-group differences in  
global FA). Ten thousand permutations were computed, and in each permutation, 
the cross-disorder involvement of the subsets of connections was calculated. 
Observed effects were assigned a P value as the percentage of the permutations in 
which the measured effect was equal to or exceeded the observed effect.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The reference connectome dataset was based on data from the HCP, which are 
available from https://www.humanconnectome.org. The datasets ASD II,  
ASD III and ASD IV were obtained from the ABIDE II database and are available 
from http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html. The datasets 
Alzheimer’s disease II, MCI II and PTSD II were obtained from the ADNI and 
DOD ADNI database and are available from http://adni.loni.usc.edu. The dataset 
Schizophrenia III was obtained from the COBRE database and is available from 
https://fcon_1000.projects.nitrc.org/indi/retro/cobre.html. The datasets ADHD I,  
ALS, Alzheimer’s disease I, ASD I, Bipolar disorder, MCI I, MDD, Obesity, OCD, 
PLS, PTSD I, Schizophrenia I and Schizophrenia II are subject to specific data-
sharing restrictions. To inquire about access to the restricted datasets, please 
contact the corresponding author.

Code availability
All codes used are available from the corresponding author on reasonable request.
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Dataset Schizophrenia III was obtained from the COBRE database and is available from http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html 
Datasets ADHD I, ALS, Alzheimer's disease I, ASD I, Bipolar disorder, MCI I, MDD, Obesity, OCD, PLS, PTSD I, Schizophrenia I and Schizophrenia II are subject to 
specific data-sharing restrictions. To inquire about access to the restricted datasets, please get in touch with Martijn P. van den Heuvel 
(martijn.vanden.heuvel@vu.nl).
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was based on availability of data, no statistical methods were used to pre-determine sample size.

Data exclusions Participants with missing demographic information were excluded. Data-driven outlier detection was performed based on the deviation of 
participants’ connectivity from the group average on three summary statistics. The first two measures quantified the presence of odd 
connections and the absence of common connections. The third measure was the average fractional anisotropy of all connections in the 
reconstructed brain network of a participant. For each of these measures the interquartile range (IQR) was calculated by IQR = Q3 - Q1, with 
Q3 and Q1 being the 75th and 25th percentiles respectively. Participants with a score below Q1-2×IQR or above Q2+2×IQR for any of the 
three measures were considered outliers.

Replication The main analysis was repeated using different cortical parcellations, analysis parameters, meta-analysis strategies and varying sets of 
examined disorders. Rich club connections showed significantly higher cross-disorder involvement than local connections in all robustness 
analyses. Higher cross-disorder involvement of rich club connections compared to feeder connections was limited to only a subset of 
robustness analyses. 
 
Connections central according to edge-betweenness centrality and spatial wiring length showed higher cross-disorder involvement than seen 
in randomized cross-disorder involvement maps in all robustness analyses. Central connections selected by importance to communicability 
showed higher cross-disorder involvement when considering 5%, 10%, 15% and 20% of the connections as “disorder involved”, but not when 
25% of the connections were considered “disorder involved” indicating effects were restricted to strict sets of “disorder involved” 
connections. The vulnerability of central connections selected by importance to communicability was confirmed in all other robustness 
analyses.

Randomization Participants were allocated into patient and control groups based on information on diagnosis as used or provided in original publications and 
databases. Participants were further matched to ensure comparable age and gender distributions between patient and control groups.

Blinding Blinding was not relevant to our study as data was obtained from previous studies and open datasets.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics All population characteristics are prestented in Table1 and were described in original publications associated with all datasets.

Recruitment Participation recruitment differed across datasets and were described in original publications associated with all datasets.

Ethics oversight Written consent was given by all participants as approved by local ethics committees.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Magnetic resonance imaging
Experimental design

Design type Diffusion weighted imaging

Design specifications NA

Behavioral performance measures NA

Acquisition

Imaging type(s) Structural and diffusion

Field strength 3 Tesla

Sequence & imaging parameters Sequence and imaging parameters were described in original publications associated with all datasets.

Area of acquisition Whole brain scan

Diffusion MRI Used Not used

Parameters Sequence and imaging parameters were described in original publications associated with all datasets.

Preprocessing

Preprocessing software Freesurfer 5.1.0: Cortical parcellation, mapping of T1-weighted images to DWI images 
FMRIB Software Library 5.0.4: Mapping of T1-weighted images to the DWI images, correcting DWI images for eddy 
current distortions, head motion and susceptibility induced distortions 
MATLAB release 2017b: Fitting diffusion signals, network reconstruction

Normalization Data was not normalized.

Normalization template Data was analyzed within subject space, as connectome analyses were based on individual DWI data and the cortical 
parcellation was obtained in subject space as well.

Noise and artifact removal Diffusion-weighted images were corrected for eddy current distortions and head motion using the FMRIB Software 
Library. If reversed phase encoding data was available, susceptibility induced distortions were estimated and 
incorporated in the preprocessing using the FMRIB Software Library.

Volume censoring Data was not volume censored.

Statistical modeling & inference

Model type and settings NA. MRI data was processed for connectome analyses and no modelling was performed.

Effect(s) tested NA

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

NA

Correction NA

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Graph analysis Central connections were identified with respect to their importance in the topology of a reference HCP 
group connectome. We examined rich-club, feeder and local connection classes, which were defined by 
high-degree hub regions. At the connection level, topological centrality was examined by edge-
betweenness (based on shortest topological paths in the FA-weighted network), edge-removal effect on 
network communicability and edge-removal effect on network clustering.
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