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Several statistical methods have been proposed for testing gene-environment (G-E) interactions under
additive risk models using data from genome-wide association studies. However, these approaches have strong
assumptions from underlying genetic models, such as dominant or recessive effects that are known to be less
robust when the true genetic model is unknown. We aimed to develop a robust trend test employing a likelihood
ratio test for detecting G-E interaction under an additive risk model, while incorporating the G-E independence
assumption to increase power. We used a constrained likelihood to impose 2 sets of constraints for: 1) the
linear trend effect of genotype and 2) the additive joint effects of gene and environment. To incorporate the
G-E independence assumption, a retrospective likelihood was used versus a standard prospective likelihood.
Numerical investigation suggests that the proposed tests are more powerful than tests assuming dominant,
recessive, or general models under various parameter settings and under both likelihoods. Incorporation of
the independence assumption enhances efficiency by 2.5-fold. We applied the proposed methods to examine
the gene-smoking interaction for lung cancer and gene–apolipoprotein E ε4 interaction for Alzheimer disease,
which identified 2 interactions between apolipoprotein E ε4 and loci membrane-spanning 4-domains subfamily
A (MS4A) and bridging integrator 1 (BIN1) genes at genome-wide significance that were replicated using inde-
pendent data.

additive risk model; Alzheimer disease; case-control design; gene–APOE ε4 interaction; gene-environment
independence; gene-environment interaction; gene-smoking interaction; GWAS

Abbreviations: APOE, apolipoprotein E; BIN1, bridging integrator 1; G-E, gene-environment; GWAS, genome-wide association
study; LOAD, late-onset Alzheimer disease; LRT, likelihood ratio test; LRT-P, prospective likelihood ratio test; LRT-R, retrospective
likelihood ratio test; MOR, marginal odds ratio; RERI, relative excess risk due to interaction; SNP, single nucleotide polymorphism.

A gene-environment interaction is defined as the joint
effect of genetic and environmental factors that cannot be
explained by their separate marginal effects (1). Statistically,
an interaction is defined as a departure from the underlying
disease risk model, which depends on the selection of proper
scale for measuring the presence of interactions (2). While
multiplicative interaction based on a logit model is more
commonly used for case-control studies, additive interaction
has been shown to be more relevant for evaluating prevention
or intervention strategies in public health decision-making
(3–5). Additive interaction measures the departure from an

additive risk model, which assumes that gene and environ-
ment act additively on the risk of the disease itself (6, 7).
It has been shown that conceptual models for biological
interactions translate to the presence of interaction on the
additive scale and not necessarily the multiplicative scale
(8). Recently, several studies reported G × G or G × E
interaction findings applying additive interaction tests for
various complex diseases (9–11).

A number of methods have been proposed for detecting
additive interactions between risk factors for case-control
studies (12–16), including the methods for estimating the
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confidence intervals of the relative excess risk due to inter-
action (RERI), which measures the magnitude of additive
interaction (17–19). A likelihood ratio test (LRT) has been
developed for additive interaction based on a set of con-
straints to ensure the additive joint effects of gene and
environment, which also incorporates the gene-environment
(G-E) independence assumption to increase power (13).
Another recent study extended this method and applied an
empirical Bayes-type approach to exploit the G-E indepen-
dence assumption in a data-adaptive way (14). However, the
main limitation of these methods is their strong assumptions
from the underlying genetic model, such as dominant or
recessive effects that are known to be less robust when the
true genetic model is unknown. A more general genetic
model that treats genotype as a categorical variable (i.e.,
allowing 2 separate parameters for the main effect of geno-
type) has also been proposed (13), but it has been shown
to have reduced power due to increased degrees of freedom
(df). It is also known that most common variants associated
with complex diseases from genome-wide association study
(GWAS) have been identified under an additive genetic
model (20), where the effect of genotype is linear (i.e., the
trend effect of genotype), rather than the effect being under
a dominant or recessive model. Studies have shown that
association tests based on the trend effect of genotype are
more robust compared with dominant or recessive model–
based tests under varying true genetic models (21), which
have been widely used in analyzing the main effects of
common variants in most recent GWAS (22, 23).

In this study, we developed a new statistical test for detect-
ing additive interaction that incorporates the trend effect
of genotype by extending the previously developed LRT
(13). We use a constrained likelihood approach to impose
2 sets of constraints for: 1) the trend effect of genotype
and 2) the additive joint effect of gene and environment,
using the parameter estimates obtained from a saturated logit
model. To incorporate the G-E independence assumption, a
retrospective likelihood is used. We conducted a simulation
study with varying genetic models and varying magnitudes
of interaction. We applied the proposed method to examine
the gene-smoking interaction for lung cancer and both gene–
apolipoprotein E (APOE) ε4 and gene-sex interactions for
late-onset Alzheimer disease (LOAD). We implemented this
method in the freely available R (R Foundation for Statistical
Computing, Vienna, Austria) package, CGEN (https://www.
bioconductor.org/packages/release/bioc/html/CGEN.html).

METHODS

Additive interaction under a dominant or recessive
genetic model

For subject i, Gi is a binary genetic factor, where Gi = 1
if the subject has at least 1 copy of the variant of interest in
a single nucleotide polymorphism (SNP) and Gi = 0 other-
wise for a dominant genetic model; Gi = 1 if the subject has
2 copies of the variant in a SNP and Gi = 0 otherwise for a
recessive genetic model. Ei is an environmental risk factor
that is a categorical variable, and Di is the disease status
(Di = 1 if one has a disease and Di = 0 otherwise). Without

loss of generality, we assume a binary Ei in this setting. An
additive risk model assumes that Gi and Ei act additively on
the risk of the disease itself without any (nonidentity) link
function: P(Di = 1|Gi, Ei) = b0+bGGi+bEEi. A departure
from this model is called an additive interaction, which can
be tested using the null hypothesis of H0 : bGE = 0 in the
following model:

Ri = P (Di = 1|Gi, Ei) = b0 + bGGi + bEEi + bGEGiEi.

Suppose Rge = P(D = 1|G = g, E = e) for g, e = 0, 1.
The null hypothesis, H0 : bGE = 0, can be expressed as
R11−R01 = R10−R00, which implies that the risk difference
associated with Gi is constant across different levels of Ei.
By dividing this equation by the reference risk R00(RRij =
Rij/R00), we obtain the relative risk relationship for the null:
RR11 − RR01 = RR10 − 1. Assuming a rare disease, we can
approximate a relative risk by an odds ratio, and hence we
obtain H0 : OR11 − OR01 = OR10 − 1. This implies that
additive interaction can be tested using the following null
hypothesis:

H0 : exp(βG + βE + βGE)

− exp(βG) − exp(βE) + 1 = 0, (1)

where the parameters are estimated using the saturated logit
model,

logit {Pr (Di = 1|Gi, Ei)}
= β0 + βGGi + βEEi + βGEGiEi. (2)

Additive interaction can be tested using a likelihood ratio test
using the null hypothesis in equation 1 against the alternative
using the model in equation 2, which gives a 1-df test. The
magnitude of additive interaction can be measured by RERI,
which is defined as: RERIG = exp(βG + βE + βGE) −
exp(βG) − exp(βE) + 1. This additive interaction LRT can
be generalized to Gi as a 3-level categorical variable (Gi= 0,
1, 2) and multilevel Ei (Ei = e1, e2, . . . , ek), which has been
derived in a previous study (13) and implemented in CGEN
(24). This general model–based test has larger df (df = 2k
versus df = k for a dominant or recessive model–based test).

Additive interaction under the trend effect of genotype
(additive genetic model)

To extend the method described in the previous section
to an approach based on the trend effect (linear effect)
of genotype, we consider the following saturated additive
model for a 3-category genetic factor, Gi (Gi= 0, 1, 2):

Ri = P (Di = 1|Gi, Ei)

= b0 + bG1G1i + bG2G2i + bEEi

+ bG1EG1iEi + bG2EG2iEi,

Where G1i and G2i are dummy variables indicating whether
subject i has 1 or 2 copies of the variant in a given SNP.
Any covariates can also be included in the model without
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Table 1. Disease Risk and Odds Ratio for Gene (G = 0,1,2) and Environment (E = 0,1) Based on the Saturated Additive Risk Model and the
Saturated Logistic Regression Model, Respectively

G
Disease Risk Odds Ratio

E = 0 E = 1 E = 0 E = 1

G = 0 R00(= b0) R01(= b0 + bE) OR00(= 1) OR01(= exp(βE))

G = 1 R10(= b0 + bG1 ) R11(= b0 + bG1 + bE + bG1E) OR10(= exp(βG1 )) OR11(= exp(βG1 + βE + βG1,E))

G = 2 R20(= b0 + bG2 ) R21(= b0 + bG2 + bE + bG2E) OR20(= exp(βG2 )) OR21(= exp(βG2 + βE + βG2,E))

Abbreviations: E, environmental factor; G, genetic factor; OR, odds ratio; R, risk.

affecting the derivations that are shown in this section. The
corresponding risk and odds ratio for each G and E are shown
in Table 1. The trend effect of G on the disease risk (or linear
effect of G) can be expressed as:

R20 − R10 = R10 − R00 (for E = 0) and (3)

R21 − R11 = R11 − R01 (for E = 1). (4)

The null hypothesis of no additive interaction, H0 : bG1,E =
bG2,E = 0, can equivalently be expressed as:

H0 : R11 − R01 = R10 − R00 (5)

and

R21 − R11 = R20 − R10. (6)

These equations can be rewritten in terms of relative risks by
dividing them by the baseline risk, R00. These relative risks
can be approximated using odds ratios under a rare disease
assumption. We use the following saturated logit model to
obtain the odds ratio for each combination of levels of G
and E:

logit {Pr (Di = 1|Gi, Ei)}
= β0 + βG1G1i + βG2G2i + βEEi

+ βG1EG1iEi + βG2EG2iEi, (7)

which are shown in the last 2 columns in Table 1. Using these
odds ratios, the trend effect relationships in equation 3 and
equation 4 are expressed as:

βG2 = log(2 exp(βG1) − 1)

(⇐⇒ exp(βG2) − exp(βG1) = exp(βG1) − 1) (3b)

and

βG2,E = log

(
2 exp

(
βG1 + βG1,E

) − 1

2 exp
(
βG1

) − 1

)

= log

(
2 exp

(
βG1 + βG1,E

) − 1

exp
(
βG2

)
)

. (4b)

We note that the “usual” additive coding of the genotype for
the trend effect for multiplicative interaction (i.e., coding G
as 0, 1, or 2 depending on the number of a minor allele) is
different from the trend effect of genotype for additive inter-
action (shown in equations 3b and 4b) due to the different
link functions used for these models (logit versus identity).
Similarly, the null hypothesis in equation 5 and equation 6
is expressed as:

H0 : βG1,E = log

(
exp

(
βG1

) + exp (βE) − 1

exp
(
βG1 + βE

)
)

(⇐⇒ RERIG=1 = 0) (5b)

and

βG2,E = log

(
exp

(
βG2

) + exp (βE) − 1

exp
(
βG2 + βE

)
)

(⇐⇒ RERIG=2 = 0) . (6b)

Based on simple algebra, we show that the equations in
equation 5b and equation 6b are identical when the trend
effect relation equations in equation 3b and equation 4b
hold. Therefore, under the trend effect of genotype, the null
hypothesis for testing additive interaction is equation 5b.

Constrained LRT for additive interaction under the
trend effect of genotype

In conducting an LRT, we first fit the saturated logit
model shown in equation 7 with the 2 trend effect–related
constraints shown in equation 3b and equation 4b (i.e., the
full model). This model includes the following free param-
eters to be estimated by the maximum likelihood method:
β0, βG1 , βE, and βG1,E. In the second step, we further impose
the additional null hypothesis related constraint from equa-
tion 5b to fit the null model, which has 3 free parameters:
β0, βG1 , and βE. We conduct an LRT by comparing the full
model with the null model, which gives a 1-df test. For
fitting these models, we use a “prospective likelihood” that
is commonly used for case-control data: L = ∏

i
Pr(Di =

d|Gi, Ei) = ∏
i
{Rdi

i (1 − Ri)
1−di} (for di = 0,1), and hence-

forth we refer to the corresponding test as LRT-P.
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Extension to incorporate the G-E independence
assumption

For case-control analysis, an assumption of G-E indepen-
dence in the underlying population can be used to enhance
the power of G-E tests (13, 25, 26). It has been shown
that a retrospective likelihood for case-control data can help
exploit the G-E independence assumption to obtain efficient
parameter estimates of a general logistic model (25). More
recently, a study showed how the retrospective likelihood
framework can enable the G–E independence assumption to
enhance the power of additive interaction tests (13).

To incorporate the G-E independence assumption in our
method, we used the profile likelihood-based approach
developed by Chatterjee and Carroll (25) to develop a
retrospective LRT for additive interaction under the trend
effect of genotype, henceforth denoted LRT-R. The profile
likelihood is given by:

L = ∏
i

Pr(Di = d, Gi = g|Ei = e, Si = s, R = 1),

where R indicates whether or not a subject is included
in the case-control design, and Si is a stratifying variable
(such as ethnicity or principle components of population
stratification).

Simulation study

We conducted a simulation study to evaluate the type I
error rates and power of the proposed additive interaction
tests under the trend effect of genotype and compared the
power with those under the existing dominant, recessive,
and general model–based additive interaction tests. For the
power simulation, we considered the 4 different scenarios
where the true disease risk model is under: 1) the trend effect
of genotype (i.e., additive genetic model), 2) the dominant
model, 3) the recessive model, and 4) the general model
(i.e., a departure from the dominant, recessive, and trend
effect models). In each scenario, we varied the magnitude
of additive interaction (i.e. RERIG=1) from 0.8 to 1 and
1.2. We assumed that G and E are independently distributed
in the underlying population. The minor allele frequency
of G was set as 0.3, and the prevalence for E was set as
Pr(Ei = 1) = 0.2. We also assumed the disease was rare,
so that disease-free subjects approximately represented the
underlying population. The disease prevalence was assumed
to be 0.01. We fixed the marginal odds ratio (MOR) for the
gene (MOR(G))—that is, the disease odds ratio for G = 1
(vs. G = 0) if environment is ignored in the analysis—
at 1.25, reflecting the modest strength of genetic associa-
tion typically observed in GWAS, and varied the MOR for
environment (MOR(E)) from 2.5 to 3.5. The saturated logit
model in equation 7 was used to simulate data. We chose
the parameter values for β0, βG1 , βG2 , βE, βG1,E, and βG2,E
in the logistic model so that MOR(G), MOR(E), and RERI
are fixed at given values (see Table 2). To compare the power
of the proposed trend effect–based LRT-R versus LRT-P,
we used the parameters under the truth of the trend effect
model (the first 6 rows in Table 2). In each simulation, we
generated G and E data for 5,000 cases and 5,000 controls.
A significance level of α = 1.00 × 10−7 was used for power

calculation with 1,000 replicates, and 10,000 replicates were
used for assessing type I error.

Data description for lung cancer and smoking

We applied the proposed method to examine the gene ×
smoking interaction for lung cancer, where smoking is a
known risk factor. We used National Cancer Institute GWAS
data that included 5,739 cases and 5,848 controls from 4
studies (27). This data included 14 SNPs that were identi-
fied from previous GWAS (P < 5 × 10−8), conducted in
either White (28–31) or Asian populations (32–34) listed
in the National Human Genome Research Institute GWAS
catalog (https://www.ebi.ac.uk/gwas/). The genetic regions
for this data include 15q25.1, which is known to interact
with smoking under an additive model (16) and is associated
with smoking behaviors (35–41). Therefore, we applied only
LRT-P to the SNPs in this region. The goal of this analysis
was to compare the results using the proposed tests with
those using the existing additive interaction tests based on
dominant or general models. For each SNP, we applied both
LRT-P and LRT-R (except 15q25.1), and the model adjusted
for age, gender, and study, where the study variable was used
as a stratification variable (S) for LRT-R.

Data description for LOAD and gene × sex and gene ×
gene interactions

We also applied the proposed methods to the GWAS
data for LOAD to examine gene × sex interaction and
gene × APOE ε4 gene interaction. The ε4 allele of the
apolipoprotein E gene (APOE, on chromosome 19q13.32,
Online Mendelian Inheritance in Man (OMIM)∗107741) is
the strongest genetic risk factor for LOAD (42). Individuals
carrying 2 copies of the APOE ε4 allele have more than
a 10-fold increased risk of LOAD (43). It is reported that
women have a higher risk of LOAD than men (44). Our
goal was to examine interactions between SNP × APOE ε4
and SNP × sex by applying the proposed methods. For the
discovery phase, we used GWAS data that includes 8,861
cases and 7,613 controls who are of Northwestern European
ancestry, collected from 18 different studies. These data
were made available by the National Institute on Aging
Genetics of Alzheimer’s Disease Data Storage Site and
similar LOAD repositories (Web Appendix 1; Web Tables
1–2) (45). The GWAS data included 89,936 SNPs across the
genome, which were pruned from approximately 5 million
SNPs using the following procedure: 1) we ranked SNPs
by the significance of the main effect for SNP-LOAD risk
association; 2) starting from the top ranked SNP, we evalu-
ated pairwise linkage disequilibrium between the given SNP
and each other SNP to remove the SNPs that were in high
linkage disequilibrium (r2 > 0.9); and 3) we removed SNPs
with a minor allele frequency below 5% (45). This procedure
was used to reduce the computational burden of the analysis
through the removal of highly correlated SNPs but retain
the SNPs that were relevant to LOAD risk (45). The prun-
ing was conducted based on PriorityPruner, v.0.1.4 (http://
prioritypruner.sourceforge.net/). For the validation phase,
we used an independent data set obtained from the second
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Table 2. Twenty-Four Sets of Parameter Values Used to Simulate Gene, Environment, and Disease Indicator Using the Logistic Regression
Model in Equation 7

MOR and
Parameter

Trend Model Dominant Model Recessive Model General Model

RERIa RERIa RERIb RERIa

0.8 1 1.2 0.8 1 1.2 0.8 1 1.2 0.8 1 1.2

MOR(E) = 2.5,
MOR(G) = 1.25

exp(β0) 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008

exp(βG1) 1.160 1.108 1.064 1.160 1.114 1.070 1.000 1.000 1.000 1.160 1.111 1.067

exp(βG2) 1.320 1.216 1.128 1.160 1.114 1.070 1.172 1.132 1.093 1.237 1.164 1.099

exp(βE) 2.200 2.040 1.880 2.260 2.120 2.030 2.490 2.477 2.440 2.230 2.080 1.954

exp(βG1E) 1.238 1.393 1.572 1.228 1.369 1.519 1.000 1.000 1.000 1.233 1.381 1.545

exp(βG2E) 1.419 1.716 2.079 1.228 1.369 1.519 1.186 1.287 1.400 1.320 1.533 1.777

MOR(E) = 3,
MOR(G) = 1.25

exp(β0) 0.007 0.007 0.007 0.006 0.006 0.006 0.007 0.007 0.007 0.007 0.007 0.007

exp(βG1) 1.186 1.140 1.099 1.189 1.143 1.095 1.000 1.000 1.000 1.187 1.141 1.097

exp(βG2) 1.372 1.280 1.198 1.189 1.143 1.095 1.199 1.157 1.117 1.277 1.210 1.145

exp(βE) 2.790 2.630 2.450 2.840 2.700 2.520 3.000 2.980 2.960 2.815 2.665 2.485

exp(βG1E) 1.141 1.257 1.392 1.134 1.245 1.383 1.000 1.000 1.000 1.138 1.251 1.387

exp(βG2E) 1.244 1.459 1.720 1.134 1.245 1.383 1.112 1.200 1.294 1.188 1.348 1.542

Abbreviations: E, environmental factor; G, genetic factor; MOR, marginal odds ratio; RERI, relative excess risk due to interaction.
a RERI denotes RERIG = 1 for trend, dominant, and general model; the values for RERIG = 2 for the general model are: 1.175, 1.45, and 1.76,

with corresponding RERIG = 1 values of 0.8, 1, and 1.2, respectively.
b RERI denotes RERIG = 2 for recessive model.

wave of National Institute on Aging—Alzheimer’s Dis-
ease Centers GWAS (ADC4–7) (Web Appendix 1), which
included 1,907 cases and 1,677 controls who were of Euro-
pean ancestry, and comprised the top 2 SNPs that showed
significance (P < 5 × 10−8) in our discovery phase (show
below). The APOE ε4 variable was coded as 1 for mutation
carriers versus 0 for noncarriers, as commonly used in the
literature (46, 47). This gene is located on chromosome 19q,
and hence the SNPs in this gene (and neighboring SNPs)
might violate the assumption for G-E (in this case G-G)
independence. Therefore, we excluded this region for LRT-
R-based SNP × APOE ε4 analysis. The model adjusted for
age, sex, and study, and we used the study variable as a
stratification variable for LRT-R.

RESULTS

Simulation study

The results in Table 3 show that the proposed methods
for additive interaction have correct type I error rates for
both LRT-P and LRT-R. The power simulation results under
the prospective likelihood are shown in Figure 1, where the
first column shows the power of the 4 additive interaction
tests applied to the data generated under an additive genetic

model. The results demonstrate that the proposed trend
effect–based interaction test has a larger power compared
with the existing (dominant, recessive, and general model–
based) tests across different magnitudes of additive interac-
tion (RERI). When data were simulated under the truth of
the dominant model (the second column in Figure 1), the
additive interaction test assuming the dominant model was
most powerful, as expected, and the general model–based
and the proposed trend effect–based tests showed compara-
ble power. For data simulated under the model that departs
from the dominant and the trend effect models (the third
column in Figure 1), the proposed test showed a larger power
than the dominant model–based test and had a comparable
power to the general model–based test.

We also compared the power of the proposed trend effect–
based additive test under the prospective versus retrospective
likelihood that assumes the G-E independence assumption.
The results in Figure 2 show that the trend effect–based
interaction test under the retrospective likelihood provides
a larger power than the one under the prospective likelihood
across different RERIs. The third column in Figure 2 shows
that the retrospective likelihood-based approach has 2.4–2.5
times increased efficiency compared with the prospective
likelihood approach, by exploiting the G-E independence
assumption. For comparison, the simulation results using
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Table 3. Type 1 Error Rates of the Additive Interaction Tests Based on the Trend Effect of the Genotype, Dominant Model, Recessive Model,
and General Model

α

LRT-R LRT-P

Trend
Test

Dominant
Test

Recessive
Test

General
Test

Trend
Test

Dominant
Test

Recessive
Test

General
Test

0.1000 0.0987 0.1007 0.1018 0.1018 0.0987 0.0991 0.0987 0.0997

0.0500 0.0466 0.0497 0.0534 0.0507 0.0497 0.0510 0.0508 0.0494

0.0100 0.0109 0.0090 0.0112 0.0093 0.0076 0.0092 0.0087 0.0097

0.0050 0.0050 0.0047 0.0054 0.0044 0.0034 0.0046 0.0047 0.0051

0.0010 0.0009 0.0009 0.0010 0.0010 0.0009 0.0012 0.0012 0.0011

Abbreviations: LRT-P, prospective likelihood ratio test; LRT-R, retrospective likelihood ratio test.

the multiplicative interaction tests (trend, dominant, reces-
sive, and general) under both likelihoods are shown in Web
Figures 1–2. These showed consistent results compared
with the additive interaction tests (Figure 1 and Figure 2),
where the trend effect–based test showed robustness across
different underlying genetic models, and the approach under
the retrospective likelihood increased efficiency compared
with the prospective likelihood.

Application to the lung cancer and smoking data

The results of the SNP × smoking interaction analysis
for lung cancer are shown in Table 4. Among the 14
SNPs we examined, 3 SNPs (rs8034191 and rs8042374 in
15q25.1 and rs31489 in 5p15.33) showed statistical sig-
nificance (α = 0.0006 based on Bonferroni correction).
Web Table 3 displays the 3 × 2 odds ratio tables and
RERI estimates for these SNPs. The topmost significant
interaction was with rs8034191 (P = 5.55 × 10−16 using
the trend effect–based test; RERI = 2.16, 95% CI: 1.54,
2.78), which confirmed the previously reported additive
interaction between this SNP and smoking (16). For this
SNP, the proposed trend effect–based test showed improved
significance (P = 5.55 × 10−16) compared with the dominant
(P = 1.13 × 10−14) or general model–based tests (P = 7.88 ×
10−15). Increase of risk induced by the C allele of this SNP
is significantly larger among ever smokers versus never
smokers. Another SNP that reached statistical significance
was rs31489 at the cleft lip and palate transmembrane
protein 1-like protein gene (CLPTM1L) at 5p15.33, which
showed improved significance for trend effect–based tests
compared with the dominant or general model–based tests,
with highest significance observed for the trend effect–based
test under the retrospective likelihood (P = 4.11 × 10−4;
RERI = −0.75, 95% CI: −1.20, −0.28).

Application to the LOAD GWAS data

Web Table 4 shows the top 30 most significant findings
from the SNP × APOE ε4 interaction analysis (discovery

phase) and is sorted by the significance of the additive
interaction test based on the trend effect of genotype under
the retrospective likelihood approach. Applying the genome-
wide significance level (α = 5 × 10−8), 2 SNPs were statis-
tically significant across the different tests conducted (see
Table 5 for odds ratios and RERI estimates), the proposed
trend effect–based additive interaction test showing the most
significant P values for both of them. The topmost signifi-
cant SNP × APOE ε4 interaction was found with rs6733839
on 2q14.3 (additive interaction trend test P = 5.56 × 10−14;
RERI = 1.11, 95% CI: 0.788, 1.422), where the absolute
increase of risk induced by the T allele was significantly
larger among APOE ε4 carriers versus noncarriers. To exam-
ine this region further, we pulled out all the SNP data in the
region harboring rs6733839 (+/− 200kb) and conducted the
same set of tests. The zoom-in Manhattan plot in Web Figure
3A shows a peak around the SNP rs6733839, where a neigh-
boring SNP rs4663105 that shows stronger significance
(P = 4.77 × 10−15) is highly correlated with rs6733839
(r2 = 0.94). The second-most significant interaction was
identified with rs1582763 (P = 5.32 × 10−9; RERI = −0.64,
95% CI: −0.852, −0.426) in 11q12.2, an intergenic variant
near membrane-spanning 4-domains subfamily A member
4A (MS4A4A). The zoom-in plot for this SNP, shown in Web
Figure 3B, shows a peak around rs1582763. The results
of SNP × sex interaction did not show any significant
findings (P < 5 × 10−8) (see Web Figure 4). We conducted
a validation study using an independent data set to evaluate
the top 2 findings at rs6733839 and rs1582763. The
result is shown in Table 5, where both interaction findings
were replicated using this independent data set, showing
consistent directions of RERIs with improved significance
when data were pooled for discovery and validation.

DISCUSSION

In this study, we developed a robust LRT for detecting
G × E interaction based on the trend effect of genotype
under an additive risk model that incorporates the G-E
independence assumption. We used a constrained likelihood
approach to impose 2 sets of constraints, the linear trend
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Gene-Environment Tests Under Trend Effect of Genotype 135

Figure 1. The results for power simulation of additive interaction tests based on a prospective likelihood for data generated under trend model
and marginal odds ratio (MOR)(E) = 2.5 (A), dominant model and MOR(E) = 2.5 (B), general model and MOR(E) = 2.5 (C), trend model and
MOR(E) = 3 (D), dominant model and MOR(E) = 3 (E), general model and MOR(E) = 3 (F). Significance level of α = 1 × 10−7 was used.
1,000 replicated data sets were simulated for 5,000 cases and 5,000 controls. For each set of simulation, we applied the following 4 additive
interaction tests based on a prospective likelihood: the likelihood ratio test (LRT) under the trend effect of genotype (prospective LRT, LRT-P-
trend), a general model (LRT-P-general), a dominant model (LRT-P-dominant), and a recessive model (LRT-P-recessive). RERI, relative excess
risk due to interaction.
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Figure 2. Comparison of the power of the trend effect–based additive interaction tests for the retrospective likelihood ratio test (LRT-R) versus
prospective likelihood ratio test (LRT-P) for data generated with marginal odds ratio (E) (MOR(E)) = 2.5 (A) and MOR(E) = 3 (D). The noncentrality
parameter (NCP) for each LRT, for MOR(E) = 2.5 (B) and MOR(E) = 3 (E), was estimated to compare the performances of the tests regardless
of significance levels. The relative efficiency of LRT-R with regard to LRT-P, for MOR(E) = 2.5 (C) and MOR(E) = 3 (F), was estimated by taking
the ratio of the NCP of LRT-R to the NCP of LRT-P. RERI, relative excess risk due to interaction.
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Table 4. P Value of Lung Cancer Data Analysisa Using a Set of Additive Interaction Tests Based on the Trend Effect of the Genotype, Dominant
Model, and General Model

SNP
Chromosomal

Region

LRT-Rb LRT-P

Trend Dominant General Trendc Dominant General

rs8034191 15q25.1d N/A N/A N/A 5.55 × 10−16e
1.13 × 10−14e

7.88 × 10−15e

rs8042374 15q25.1d N/A N/A N/A 2.77 × 10−12e
1.37 × 10−11e

1.49 × 10−11e

rs3117582 6p21.33 4.07 × 10−3 1.28 × 10−2 3.24 × 10−3 3.08 × 10−3 1.46 × 10−2 1.23 × 10−3

rs31489 5p15.33 4.11 × 10−4e 1.18 × 10−2 1.67 × 10−3 1.84 × 10−2 6.39 × 10−2 5.73 × 10−2

rs2395185 6p21.32 1.81 × 10−2 3.10 × 10−2 2.88 × 10−2 4.02 × 10−2 3.75 × 10−2 1.10 × 10−1

rs4324798 6p22.1 2.76 × 10−1 4.76 × 10−1 2.63 × 10−2 6.12 × 10−2 1.39 × 10−1 3.98 × 10−2

rs4975616 5p15.33 3.77 × 10−3 5.76 × 10−3 1.76 × 10−2 7.11 × 10−2 4.02 × 10−2 1.19 × 10−1

rs401681 5p15.33 1.94 × 10−3 4.98 × 10−2 3.11 × 10−3 7.16 × 10−2 1.89 × 10−1 1.77 × 10−1

rs2736100 5p15.33 5.17 × 10−2 8.98 × 10−2 1.27 × 10−1 2.56 × 10−1 5.22 × 10−1 4.79 × 10−1

rs7216064 17q24.2 5.46 × 10−1 7.12 × 10−1 8.10 × 10−1 3.16 × 10−1 4.82 × 10−1 4.27 × 10−1

rs3817963 6p21.32 1.19 × 10−1 1.98 × 10−1 2.94 × 10−1 3.65 × 10−1 5.16 × 10−1 5.86 × 10−1

rs9387478 6q22.1 9.68 × 10−1 5.29 × 10−1 6.10 × 10−1 4.29 × 10−1 4.69 × 10−1 7.20 × 10−1

rs10937405 3q28 9.84 × 10−1 8.74 × 10−1 9.64 × 10−1 8.92 × 10−1 6.10 × 10−1 5.06 × 10−1

rs753955 13q12.12 7.68 × 10−1 9.06 × 10−1 9.58 × 10−1 9.64 × 10−1 8.36 × 10−1 8.82 × 10−1

Abbreviations: LRT-P, prospective likelihood ratio test; LRT-R, retrospective likelihood ratio test; N/A, not applicable; SNP, single nucleotide
polymorphism.

a Using genome-wide association study data from the National Cancer Institute (Landi et al. (27)).
b Retrospective likelihood analysis assumes G-E independence.
c The rows are sorted by the P value of LRT-P.
d The SNPs in 15q25.1 are known to be associated with smoking (E) and hence not tested using the retrospective likelihood due to violation

of G-E independence.
e Statistically significant P values; α = 0.0006 ( = 0.05/(14 × 6)) was applied for statistical significance.

effect of genotype and the additive joint effect of gene
and environment based on a saturated logit model. Our
simulation study demonstrated that the proposed test is
robust across different underlying genetic models, showing
increased power compared with alternative methods based
on the dominant, recessive, or general models. The proposed
trend-based interaction test using the retrospective likeli-
hood showed approximately 2.5-fold increased efficiency
compared with the method based on the standard prospective
likelihood when the G-E independence assumption holds.

Application of the proposed method to the GWAS data
for LOAD yielded 2 significant interactions at genome-
wide significance between rs1582763 and APOE ε4 and
rs6733839 and APOE ε4, which were replicated using
independent data. Notably, both of these SNPs were
previously identified to be associated with LOAD risk using
GWAS data (48, 49). rs1582763 is located in the membrane-
spanning 4-domains subfamily A (MS4A) gene cluster
(closest to MS4A member 4A (MS4A4A), on chromosome
11q12.2, Online Mendelian Inheritance in Man ∗606547),
and rs6733839 is located near/in the bridging integrator
1 gene (BIN1, on chromosome 2q14.3, Online Mendelian
Inheritance in Man ∗601248). The A allele of rs1582763
was found to be associated with a decreased risk of LOAD
(P = 4.72 × 10−9) using proxy-phenotype analysis of
GWAS with subjects with parental LOAD status (48), and

further MS4A4A was implicated in AD family history-
based GWAS (50), LOAD GWAS (45), and sporadic AD
GWAS (51). rs6733839, located near BIN1, was associated
with LOAD risk (49–51) (odds ratio = 1.22; P = 6.9 ×
10−44 in Lambert et al. (49)), and BIN1 was further
implicated in LOAD GWAS (45, 52) and in sporadic AD
GWAS (51). While a recent study based on 53,711 subjects
(46) showed that both MS4A and BIN1 had potentially
differential associations with LOAD risk among APOE
ε4 carriers versus noncarriers, none attained significant
SNP × APOE ε4 (multiplicative) interactions (P = 0.27
and P = 0.87 for MS4A and BIN1 respectively). On the
other hand, our analysis detected additive interactions at
both of these loci at genome-wide significance. While we
also examined multiplicative interactions (data not shown)
for the top 30 SNPs obtained from SNP × APOE ε4
analysis, none of them, including rs1582763 and rs6733839,
showed statistical significance using α = 5 × 10−8 or
α = 1 × 10−5 (using both retrospective and prospective
likelihoods). This implies that either a multiplicative risk
model holds well overall for explaining the joint effect of
each SNP and APOE ε4 for LOAD, or a multiplicative test
is underpowered to detect true SNP × APOE ε4 interactions
due to potentially smaller interaction effect sizes (versus
RERIs that can be detected using additive interaction). We
further note that besides the top 2 SNPs, 2 other SNPs,
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rs1752684 and rs12444073, retained statistical significance
using a suggestive threshold (α = 1 × 10−5) (Web Table
4). Specifically, zinc finger protein 423 (ZNF423, where
rs12444073 is located) has recently been shown to be
associated with LOAD risk (gene-level P = 2.1 × 10−6) (53).

To the best of our knowledge, our study presents the
first method that incorporates the trend effect of genotype
for testing additive interaction using both retrospective and
prospective likelihoods. Previously, an LRT has been pro-
posed for testing additive interaction that assumes either
binary genetic data (dominant or recessive models) or gen-
eral model, which has been applied to various complex
diseases including bladder cancer and breast cancer (9–
11). However, the major limitation of this method was
strong assumptions from genetic models. Application of the
proposed trend effect–based method that overcomes this
limitation has led to reproducible interaction findings for
LOAD. Last, our new method is implemented in the freely
available R package, CGEN (24), which can facilitate its
wide application among researchers in molecular epidemi-
ology.

Despite these strengths, our study has limitations. While
the proposed test based on the retrospective likelihood is
known to increase power when the assumption of G-E
(or G-G) independence holds, it should be used with cau-
tion because violation of the assumption can produce a
bias (54). To handle this issue, an empirical Bayes-type
shrinkage estimator was previously developed for examin-
ing multiplicative interaction (55). This method employed
a weighted average of the retrospective and prospective
likelihood-based estimators for multiplicative interaction,
yielding an acceptable trade-off between bias and efficiency.
A recent work proposed a similar approach for additive
interaction, assuming a dominant or recessive model (14).
Currently, an extension of our proposed trend effect–based
method is under way to incorporate an empirical Bayes-type
shrinkage estimator.

To conclude, we have developed a test for detecting addi-
tive G-E interaction based on the trend effect of genotype
and extended it to exploit the independence between gene
and environment. Our simulation study shows that the pro-
posed method is robust under varying genetic models and
improves power when the assumption on G-E independence
is held. Future work is needed to relax this strong assumption
to be more data-adaptive.
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