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Abstract
Purpose Visual reading of 18F-florbetapir positron emission tomography (PET) scans is used in the diagnostic process of
patients with cognitive disorders for assessment of amyloid-ß (Aß) depositions. However, this can be time-consuming,
and difficult in case of borderline amyloid pathology. Computer-aided pattern recognition can be helpful in this process
but needs to be validated. The aim of this work was to develop, train, validate and test a convolutional neural network
(CNN) for discriminating between Aß negative and positive 18F-florbetapir PET scans in patients with subjective
cognitive decline (SCD).
Methods 18F-florbetapir PET images were acquired and visually assessed. The SCD cohort consisted of 133 patients from the
SCIENCe cohort and 22 patients from the ADNI database. From the SCIENCe cohort, standardized uptake value ratio (SUVR)
images were computed. From the ADNI database, SUVR images were extracted. 2D CNNs (axial, coronal and sagittal) were
built to capture features of the scans. The SCIENCe scans were randomly divided into training and validation set (5-fold cross-
validation), and the ADNI scans were used as test set. Performance was evaluated based on average accuracy, sensitivity and
specificity from the cross-validation. Next, the best performing CNN was evaluated on the test set.
Results The sagittal 2D-CNN classified the SCIENCe scans with the highest average accuracy of 99% ± 2 (SD), sensitivity of
97% ± 7 and specificity of 100%. The ADNI scans were classified with a 95% accuracy, 100% sensitivity and 92.3% specificity.
Conclusion The 2D-CNN algorithm can classify Aß negative and positive 18F-florbetapir PET scans with high performance in
SCD patients.

Key points
QUESTION: Can a convolutional neural network accurately classify 18F-
florbetapir PET brain scans in a SCD patient cohort?
PERTINENT FINDINGS: In this cohort study we observed high
performance for classification of 18F-florbetapir PET brain scans using
a CNN.
IMPLICATIONS FOR PATIENT CARE: Deep-learning-based PET
18F-florbetapir classification could be helpful in situations where there
is lack of time and experienced readers.
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Introduction

Patients with subjective cognitive decline (SCD) are at in-
creased risk for developing mild cognitive impairment
(MCI), Alzheimer’s disease (AD) or other types of dementia
[1, 2]. In the diagnostic process of patients with SCD, amyloid
imaging can be used in order to assess the presence and extent
of amyloid-beta (Aß) depositions in vivo [3–6]. Currently, the
gold standard for determining the presence of such deposi-
tions in a clinical setting is a dichotomous visual assessment
performed by a trained reader. However, accurate classifica-
tion depends on training and experience of the reader and
visual assessment can be challenging, in particular, for low
levels of Aß depositions, as may be the case in patients with
SCD.

In the past decade, various computer-aided pattern rec-
ognition algorithms have been developed to evaluate and
identify PET patterns associated with specific disease
stages, based on 18F-fluoro-deoxyglucose (18F-FDG)
brain PET images [7, 8]. These studies applied machine
learning approaches using atlas-based anatomical vol-
umes of interest (VOIs) for feature extraction to classify
AD progression in PET images. Despite yielding good
results, feature extraction depending on VOI parcellation
can be time-consuming, prone to MRI segmentation er-
rors and is observer dependent in case of manual delin-
eations. Furthermore, disease-specific patterns might not
follow predefined VOIs. Thus, deep learning algorithms,
such as a convolutional neural network (CNN), may pro-
vide superior performance since no a priori VOI defini-
tion or segmentation is required. Furthermore, with the
amount of computational power currently available,
CNNs are able to address the increasing complexity and
quantities of imaging data, while providing both deter-
ministic and objective results. Recently, CNNs have been
effectively applied in 18F-FDG-PET neurodegeneration
studies to discriminate between diagnostic groups and
identify the patterns related to AD progression without
the use of pre-defined VOIs [9]. However, in case of
patients with SCD, feature extraction can be more diffi-
cult than in AD patients, since Aß depositions can be
subtle in relation to non-specific background uptake.
Therefore, it is of interest whether CNN also could effec-
tively be applied in 18F-florbetapir PET studies in patients
specifically with SCD.

The aim of this study was to develop, train, validate and test
a 2D-CNN which is able to classify Aß negative (i.e. no am-
yloid accumulation) and positive (i.e. with amyloid accumu-
lation) 18F-florbetapir PET scans in patients with SCD.

Methods and materials

Participants

A total of 133 SCD subjects from the Subjective Cognitive
ImpairmENt Cohort (SCIENCe) study [2] (for training and
validation) were included in this study. The SCIENCe project
is a longitudinal observational study, with yearly assessments,
to investigate the earliest changes related to AD. Prior to in-
clusion, all SCIENCe subjects underwent standardized de-
mentia screening according to the procedures of the
Amsterdam Dementia Cohort [10]. Individuals were labelled
as SCD when they experienced cognitive complaints but
could not be diagnosed with MCI, dementia or any other dis-
ease which is known to cause memory complaints. Inclusion
criteria for the SCIENCe cohort are a diagnosis of SCD and
age ≥ 45 years [2]. Before enrolment, all SCIENCe subjects
provided written informed consent and the studies were ap-
proved by the Medical Ethics Review Committee of
Amsterdam UMC, location VUmc.

A total of 22 SCD subjects (used as fully independent external
test data) used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNIwas launched in 2003 as
a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has been
to test whether serial magnetic resonance imaging (MRI), posi-
tron emission tomography (PET), other biological markers, and
clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease (AD).

Data acquisition

SCIENCe PET data were acquired on a Gemini or Ingenuity
TF PET/CT scanner (Philips Medical Systems, Best, the
Netherlands) and head movements were minimized by using
a head holder. First, a low-dose computed tomography (CT)
scan was acquired for attenuation and scatter corrections.
Next, directly after tracer injection (370 MBq to 425 MBq),
a 90-min dynamic 18F-florbetapir PET scan was obtained,
consisting of 29 frames (1 × 15, 3 × 5, 3 × 10, 4 × 60, 2 ×
150, 2 × 300, 4 × 600 and 10 × 300 s), and raw data were
reconstructed using line-of-response row-action maximum
likelihood algorithm (LOR-RAMLA) (Gemini) or ordered-
subsets time of flight (BLOB-OS-TF) (Ingenuity). During re-
construction, corrections for decay, dead time, normalization
(detector sensitivities), attenuation, random coincidences and
scatter were applied. The reconstructed images had a matrix
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size of 128 × 128 × 90 and a voxel size of 2.0 mm in all 3
directions. T1-weighted MR images were acquired at 3.0
Tesla using either an Ingenuity TF PET/MR (Philips
Medical Systems, Cleveland, Ohio, USA) or a Signa HDxt
MRI (General Electric, Milwaukee, WI, USA) scanner for
structural information.

In the ADNI database, PET image acquisition has been done
according to standard ADNI acquisition protocol [11]. The scans
had amatrix size of 160 × 160 × 96 and a voxel size of 1.5mm in
all 3 directions. The ADNI PET studies used for the external test
cohort in this study were acquired from 15 different centres.

Image processing

The T1-weighted MR images (acquired within the SCIENCe
project) were co-registered to the (dynamic) PET scans using
VINCI (Max Planck Institute for Metabolism Research, Köln,
Germany) as described previously [12–14]. Next, PVElab
[15] software was used, together with the Hammers template
[16], to extract reference tissue (grey matter cerebellum) time-
activity curves (TACs). The grey matter cerebellar TAC was
then used in combination with the dynamic PET image to
calculate SUVR images from 50 to 70 min p.i. [17, 18].
These SUVR images were then spatially aligned using
Statistical Parametric Mapping (SPM8) [19] using the T1-
weighted MR images and a standard brain T1-template atlas
from the Montreal Neuroimaging Institute (MNI). Next, be-
cause of missing MRI data from the ADNI data, an average
PET template was acquired by averaging ten Aß negative and
positive (5/5) 18F-florbetapir spatially aligned PET scans of
the SCIENCe cohort. The ADNI PET scans were then spatial-
ly aligned using SPM8 using this average PET template. The
resulting images (SCIENCE and ADNI) had a matrix size of
79 × 95 × 68 and a voxel size of 2.0 mm in all three directions.
Voxels outside the brain were avoided from analyses using
whole brain grey and white matter templates (MNI).

CNN data preparation and augmentation

All training and validation PET scans were visually assessed and
labelled (positive or negative) by an experienced nuclear medi-
cine physician (BB). The external ADNI test set was visually
assessed, labelled and a confidence score [low to high:1–5]
was given by two qualified 18F-florbetapir readers (BB and SV).

Because of the high frequency of amyloid negative cases, and
imbalance of the two groups (positive or negative), oversampling
of the minority class was performed in training, to avoid the
model to be biased towards the majority class [20].
Furthermore, data augmentation was applied (using random ro-
tation, shift, shear zooming and flipping) to artificially create new
PET images and to make the neural network more robust against
head orientation [21]. To reduce complexity and circumvent the
computational and memory requirements necessary for CNN-

based classification of 3D PET images, stacked 2D PET images
(axial, coronal and sagittal slices) were used instead.

Model architecture

CNNs are able to learn latent and generic features from the
image slices [9, 22, 23]. This study proposes a 2D-CNN
framework to extract intra-slice features from the 2D image
slices. For each slice, here called decomposition (axial, coro-
nal and sagittal), a 2D-CNN model is constructed. The 2D-
CNN architecture consists of two convolution blocks
consisting each of two convolution layers to extract image
features [24], four Rectified Linear Unit (ReLu) activation
layers to introduce non-linear properties to the model [25],
two max-pooling layers to down-sample input representation
[26], batch normalization to make the model converge faster
[27], a global average pooling layer for object localization
[28] and a final sigmoid dense layer to obtain a classification
(Fig. 1). Dropouts are commonly used to avoid overfitting and
were implemented after the fully connected layers. However,
by implementing them after the max-pooling layers, artificial
noise is created, to improve generalization of the trainable
features. Therefore, two dropouts of 60% per epoch were im-
plemented after the max-pooling layers [29].

The proposed models were implemented in the Keras li-
brary in Python (version 3.6), using TensorFlow as backend.
For weights optimization, an Adam optimizer was used with a
low learning rate of 1 × 10−5 with a decay of 1 × 10−6.
Furthermore, the batch size for training the CNNs was set to
the size of the full training dataset.

Model performance

A stratified five-fold cross-validation was used to evaluate the
performance of each model its accuracy, sensitivity and spec-
ificity (Fig. 2) [30]. To this end, the SCIENCe dataset was
split into five groups, instantiating five weights/models for
each CNN (15 in total); four groups were each fold used for
training purposes and the fifth for validation of the model.
Next, the validation accuracy, sensitivity and specificity were
averaged to obtain a reliable performance measure per CNN.
The model that performed highest using the SCIENCe dataset
was considered the best model. In addition, the three individ-
ual CNN predictions (axial, coronal and sagittal) were
majority-hard-voted to obtain a combined classification.
Last, the external ADNI dataset was used to assess the perfor-
mance of the best model in an independent dataset. To deter-
mine whether similar spatial patterns are important for the
CNN as for the readers, network attention area maps were
obtained (see Fig. 3) [28]. The spatial patterns were detected
by the global average pooling layer, which averaged contribu-
tions of each of the patterns in the feature maps from the
convolution layers. More specifically, the nodes considered
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Axial/coronal/sagittal/combined CNN

5 fold cross-validation

PET data

80% Train Data
(Augmentation)

20% Validation data
(No Augmentation)

CNN performance validation data
(Average 5-fold Accuracy, Sensivity 
           and Specificity ± SD)   

Best performing weight 
per fold 

Accuracy
Sensitivity
Specificity

Model performance test data
(Accuracy, Sensivity and Specificity)

Best performing CNN
(axial/coronal/sagittal/combined)

Fig. 2 Schematic overview of the
deep learning pipeline. The CNN
uses a 5-fold cross-validation,
where for each fold 80% of the
data is used for training and 20%
for validating the CNN. The best
performing CNN is defined based
on the average 5-fold accuracy,
sensitivity and specificity and
tested on an external dataset

GAP .
.

0

1

W1

Wn

W2 Negative

Positive

Network Activation Mapping

GAP: Global Average Pooling

Convolution Block   Max Pooling   Convolution Block  Max Pooling Sigmoid

Fig. 1 Architecture of the CNN. Each convolution block consists of two
convolution layers, batch normalization and two ReLu activation
functions. Max pooling is performed to down sample the data. Using a

sigmoid function weights (Wn) are added to the nodes generated by the
GAP layer. Network activation mapping is applied for object localization
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most important for classification received a higher weight
(Wn) from the activation sigmoid dense layer, as visualized
in the network attention area map.

Results

In Table 1, demographic and clinical data is presented. Table 2
shows the performance of the different CNNs on classification
of Aβ positive and negative 18F-florbetapir scans for both the
SCIENCe (training and validation) and ADNI (test) dataset.
No overfitting occurred during training; given that differences
in model performance between training and validation dataset
were small. In general, best results were seen with a 2D-CNN
based on the sagittal dataset. This model classified the valida-
tion set with an average accuracy of 99.2 ± 1.5%, sensitivity of
96.7 ± 6.7% and specificity of 100.0%.

Between the two qualified readers, no differences in visual
assessment of the ADNI test data exist. For this dataset the
sagittal model classified with an accuracy of 95.0%, sensitiv-
ity of 100.0% and specificity of 92.3%. In addition, for this
dataset an average confidence score of 4.6 ± 0.6 was given by
the two qualified 18F-florbetapir readers and the sagittal CNN
scored the scans with an average probability of 0.95 ± 0.04.
The misclassified scan was scored by the qualified readers
with a confidence score of 3.5 (average of the two readers)
and the CNN scored the scan with a 0.88 probability.

Figure 4 shows the network attention area maps of an am-
yloid positive (label: 1) and amyloid negative (label: 0) SCD
patient and their predicted classification. It can be seen that the
occipital cortex showed high (red areas) and the frontal cortex

moderate to high (yellow-orange areas) network (node) im-
portance for the amyloid positive scan. In case of the amyloid
negative scan, it can be seen that the frontal cortex showed
most network (red areas) importance.

Discussion

A 2D-CNN to discriminate between Aß negative and positive
18F-florbetapir PET scans of SCD subjects was successfully
trained, validated and externally tested. The sagittal 2D-CNN
was able to discriminate between Aß negative and positive
18F-florbetapir PET scans with high performance in cognitive-
ly normal SCD subjects, in which Aß deposition can be subtle
or near borderline [31]. As such, the sagittal 2D-CNN can be
used as a classifier of Aβ positive and negative 18F-florbetapir
scans in SCD patients and can support the visual assessment
of these scans.

In this study, we preferred the use of 2D CNNs which are
able to address the increasing complexity and quantities of
imaging data, while minimizing computational cost. The pre-
dictions from the different decompositions can be combined
to obtain a final combined classification. However, based up-
on our findings, performance of the combined classification
was highly dependent on the individual performance of the
CNNs. Since the axial and coronal CNNs scored lower than
the sagittal CNN, a combined method did not benefit from the
different decompositions and we finally proposed a 2D-CNN
using sagittal slices as input. Previous studies proposed 3D
CNNs to predict whether the PET and/or MRI scans were
from a healthy control, MCI or AD patient [7, 32, 33].

Table 1 Subject demographics
Train and validation data: SCIENCe SCD – Aβ negative (n = 101) SCD – Aβ positive (n = 32)

Age 63.3 ± 7.3 68.0 ± 7.7

Male/females (n) 61/40 17/15

MMSE 28.9 ± 1.2 28.6 ± 1.2

Injected dose (MBq) 312 ± 37 312 ± 37

Test data: ADNI SCD – Aβ negative (n = 13) SCD – Aβ positive (n = 9)

Age 70.8 ± 5.1 72.7 ± 4.7

Male/females (n) 8/5 1/8

MMSE 29.1 ± 0.8 29.3 ± 0.7

W1 * + W2 * + … + Wn * =

f1 f2 fn

Fig. 3 Network activation mapping. The global average pooling layer takes the average of each of the filters (fn) of the last max-pooling layer. The
activation dense layer determines the individual weights (Wn) of each of these global average pooling nodes, resulting in a class prediction
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However, the ability to obtain interslice context (3D) comes at
high computational cost due to the increased number of pa-
rameters used by the CNN layers. Another consideration is
whether the performance of classification would benefit from
these interslice features. As can be seen from the results, the
sagittal 2D-CNN already performed with very high accuracy.
Consequently, the use of a 3D-CNN for this specific classifi-
cation task can be speculative.

In this study we used several strategies to avoid overfitting,
because overfitting is a critical challenge in training deeper
CNN models with a relatively limited amount of training data
compared with the large number of learnable features. To
resolve this, dropouts are used after the max-pooling layers.
The number of convolution layers andmax-pooling layers that
are used in the CNN also has influence on possible overfitting.
Low spatial resolution in PET enables the use of fewer CNN
layers, such that the CNN has less learnable parameters and
thus is less sensitive to overfitting. Therefore, the model was
restricted to four convolution layers.

Other artificial intelligence-based methods have been used
for the classification of amyloid PET studies, such as methods
based on feature extraction in combination with machine
learning [7, 8].Machine learning based on VOI feature extrac-
tion however, ignores some small abnormal changes and these
small changes can contain importantinformation that may re-
duce model robustness. In addition, potentially relevant brain
regions might not fit into the pre-defined VOIs, limiting the
representativeness of extracted features. The proposed deep

learning framework uses convolution layers instead, which
can jointly learn and discriminate the image features for su-
pervised (using only the ground truth label) image classifica-
tion, and could therefore have a better representation of the
actual data than the predefined features. Even though our
pipeline is dependent on the pre-processing, the pre-
processing was done to improve generalization of multicentre
scans and remove voxels outside the brain, thereby improving
CNN performance.

Model output verification/interpretation

The robustness of machine and deep learning models highly
depends on the validity of the provided ground truth. Visual
assessments (as ground truth) can contain errors, especially when
it requires high expertise and experience. In this study, visual
reads of the 18F-florbetapir PET scans were done by an expert
nuclear medicine physician (BB) with over 15 years of experi-
ence. Ideally, visual reads should be done by more than one
reader. However, the ADNI database does not provide such
reads; therefore, a second qualified reader (SV) visually read
and labelled the external test PET scans from theADNI database.
Between the two qualified readers, no differences in visual as-
sessment of the external test data were observed andwe therefore
did not involvemore readers. From the external ADNI test result,
it can be seen that therewas only onemisclassification. However,
this misclassification was out of all the external test scans scored
with the lowest confidence by the readers and with a relatively
low probability by the sagittal CNN. Thus, this result may sug-
gest that the CNN assesses the scans in an almost similar fashion
as the two readers. However, this should be assessed in a more
extensive study, and therefore, should be interpreted with cau-
tion. Yet, a well-trained CNN might be superior to readers who
lack training and experience in visually reading 18F-florbetapir
PET studies and it is less time-consuming.

Defining AD as a biological construct provides a precise
approach to target disease process and one of the first patho-
logical changes that occurs in the brain is the accumulation of
Aβ [34]. Thus, an accurate characterization and understand-
ing of the abnormalities for Aβ deposition is important to
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Fig. 4 Network activation maps. For each subject, a 2D class activation map with complementary probability can be obtained. The red areas indicate
patterns that are highly associated with the specific predicted class

Table 2 Performance metrics of the various CNNs

Train data: SCIENCe Accuracy (%) Sensitivity (%) Specificity (%)

Validation data: SCIENCe

Axial CNN 97 ± 2% 87 ± 7% 100%

Coronal CNN 95 ± 2% 83 ± 11% 99 ± 2%

Sagittal CNN 99 ± 2% 97 ± 7% 100%

Combined CNNs 97 ± 2% 87 ± 7% 100%

Test data: ADNI

Sagittal CNN 95% 100% 92.3%
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identify early disease stages. To aid this, network maps indi-
cating neuronal weights can be generated by combining the
convolution layers and the global average-pooling layer. The
network attention area maps are, however, not necessarily a
measure for Aβ deposition but a representation of the extract-
ed patterns that are important to the predicted group. The
occipital cortex is a region with high non-specific binding
and not commonly inspected during 18F-florbetapir clinical
PET reading [35]. Yet, interestingly we found that this region
showed high importance for the predicted group. This, how-
ever, might not be the result of increased 18F-florbetapir up-
take, but could also be due to specific texture or shape which is
associated with the predicted group. The frontal cortex is a
region associated with early Aβ deposition, and therefore,
used for 18F-florbetapir PET diagnoses [35]. From the net-
work activation map we found that this region showed mod-
erate to high importance for both the positive and negative
amyloid scan. This could be the result of respectively in-
creased or decreased 18F-florbetapir uptake in this region.

Besides 18F-florbetapir, 18F-florbetaben, 18F-flutemetamol
and Pittsburgh Compound-B (11C-PiB) are other ligands to
detect Aβ burden [36, 37]. In future studies, it is therefore of
interest to evaluate whether the 18F-florbetapir-derived sagittal
CNN could be used to classify Aβ scans obtained with 18F-
florbetaben, 18F-flutametamol and 11C-PiB.

Conclusion

A sagittal 2D-CNN to classify Aß negative and positive 18F-
florbetapir PET scans in SCD patients was successfully con-
structed, trained, validated and tested. This CNN might there-
fore be useful for classification of Aß negative and positive
18F-florbetapir PET scans in situations where there is lack of
trained and experienced readers.
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