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IMPORTANCE Late-onset Alzheimer disease (AD) is highly heritable. Genome-wide
association studies have identified more than 20 AD risk genes. The precise mechanism
through which many of these genes are associated with AD remains unknown.

OBJECTIVE To investigate the association of the top 20 AD risk variants with brain
amyloidosis.

DESIGN, SETTING, AND PARTICIPANTS This study analyzed the genetic and florbetapir F 18
data from 322 cognitively normal control individuals, 496 individuals with mild cognitive
impairment, and 159 individuals with AD dementia who had genome-wide association studies
and '8F-florbetapir positron emission tomographic data from the Alzheimer's Disease
Neuroimaging Initiative (ADNI), a prospective, observational, multisite tertiary center clinical
and biomarker study. This ongoing study began in 2005.

MAIN OUTCOMES AND MEASURES The study tested the association of AD risk allele carrier
status (exposure) with florbetapir mean standard uptake value ratio (outcome) using
stepwise multivariable linear regression while controlling for age, sex, and apolipoprotein E
€4 genotype. The study also reports on an exploratory 3-dimensional stepwise regression
model using an unbiased voxelwise approach in Statistical Parametric Mapping 8 with cluster
and significance thresholds at 50 voxels and uncorrected P < .O1.

RESULTS This study included 977 participants (mean [SD] age, 74 [7.5] years; 535 [54.8%]
male and 442 [45.2%] female) from the ADNI-1, ADNI-2, and ADNI-Grand Opportunity. The
adenosine triphosphate-binding cassette subfamily A member 7 (ABCA?7) gene had the
strongest association with amyloid deposition (x? = 8.38, false discovery rate-corrected

P <.001), after apolioprotein E 4. Significant associations were found between ABCA7 in the
asymptomatic and early symptomatic disease stages, suggesting an association with rapid
amyloid accumulation. The fermitin family homolog 2 (FERMT2) gene had a stage-dependent
association with brain amyloidosis (FERMT2 x diagnosis X = 3.53, false discovery
rate-corrected P = .05), which was most pronounced in the mild cognitive impairment stage.

CONCLUSIONS AND RELEVANCE This study found an association of several AD risk variants
with brain amyloidosis. The data also suggest that AD genes might differentially regulate AD
pathologic findings across the disease stages.
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Association of Alzheimer Disease Risk Variants With Brain Amyloidosis

poradic Alzheimer disease (AD) is 70% to 80% heritable.?

The strongest genetic risk factor for AD is the apolipo-

protein E (APOE) gene (OMIM 107741). The APOE €4
allele carries the greatest risk through the reduction of f-amyloid
(AB) clearance.>*> APOE g4 carriers have a significantly higher
prevalence of Pittsburgh compound B uptake than noncarriers
across all disease stages,® including presymptomatic amyloi-
dosis in cognitively normal control individuals.” Peripheral blood
apokE protein levels correlate with amyloid positron emission
tomography (PET) binding.®° These data indicate that imaging
phenotypes can provide meaningful information related to
gene function and pathophysiologic findings.

Previous large-scale genome-wide association studies
(GWASs)'°15 have identified and validated 20 novel AD ge-
netic risk loci. Few of these loci are in or near genes associ-
ated with AP aggregation and clearance and are thought to in-
fluence amyloid deposition.' !¢ For the remainder, the precise
disease-associated mechanism remains unknown.

Several imaging genetics studies!®2° have reported asso-
ciations of some of the AD risk genes with brain amyloidosis
or neurodegeneration. Phosphatidylinositol-binding clathrin
assembly protein (PICALM) (OMIM 603025) rs3851179, bridg-
ing integrator 1 (BINI) (OMIM 601248) rs7561528, comple-
ment component receptor 1 (CRI) rs1408077 (OMIM 120620),
adenosine triphosphate-binding cassette subfamily A mem-
ber 7 (ABCA7) (OMIM 605414) rs3764650, and membrane-
spanning 4-domains, subfamily A, member 6a (MS4A6A)
(OMIM 606548) 1s610932 are associated with cortical and hip-
pocampal atrophy.?"22 ABCA7 rs3764650 and rs3752246; BIN1
1s744373; CR1 156701713, 1s3818361, and rs6656401; and clus-
terin (CLU) rs3818361 (OMIM 185430) are associated with amy-
loid deposition. Although these studies enrich the imaging ge-
netics field, they also have significant shortcomings. Many of
these research studies have focused on a single variant'® or a
few variants!®18:22-25 while ignoring the complex polygenic
disease background. In addition, all analyses of gene-
endophenotype associations to date have largely used aver-
aged phenotypic records across all disease stages. Such an ap-
proach is justified if the risk variant has a static or conserved
effect during the disease course. However, considering the com-
plicated and constantly evolving disease pathophysiologic pro-
cess with early amyloid deposition, later onset of neuronal de-
generation, and variable degree of inflammation, we considered
stage-dependent genetic associations. Furthermore, im-
proved understanding of the polygenetic risk factors for AD
could enable personalized risk assessment, whereas an in-
depth characterization of disease-associated mechanism could
lead to new therapeutic avenues.

We report a comprehensive analysis of the associations of
all well-validated AD risk variants with brain amyloidosis. Our
goal was to establish their relative contribution to the amy-
loid burden. We hypothesized that our multivariable analytic
approach would help us more accurately model the probabil-
ity distribution of our imaging outcome measure and that we
would detect several genetic variants in addition to APOE €4
that are associated with brain amyloidosis. In addition, we
hypothesized that we might also find stage-dependent asso-
ciations with amyloid accumulation.
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Key Points

Question Which of the recently validated Alzheimer disease
genetic risk variants are associated with brain amyloidosis?

Findings In this study of 977 individuals from the Alzheimer's
Disease Neuroimaging Initiative, the adenosine triphosphate-
binding cassette subfamily A member 7 gene had the strongest
association with brain amyloidosis after apolipoprotein E 4. The
fermitin family homologue 2 gene had a stage-dependent
association with brain amyloidosis, which was most pronounced in
the mild cognitive impairment stage.

Conclusions This study found an association of AD risk variants
with brain amyloidosis.

Methods

Participants

Data used in this study were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (http://adni
Jloni.usc.edu). The ADNI is a longitudinal study with
approximately 50 sites across the United States and Canada
that was launched in 2003 (http://adni.loni.usc.edu). The goal
of the ADNI is to track the progression of AD by using clinical
and cognitive tests, magnetic resonance imaging (MRI),
fludeoxyglucose PET, amyloid PET, cerebrospinal fluid, and
blood biomarkers. The institutional review boards of all sites
participating in the ADNI provided review and approval of the
ADNI data collection protocol.

The clinical description of the ADNI cohort has been previ-
ously published.?%28 Diagnosis of AD was based on the National
Institute of Neurological and Communicative Disorders and
Stroke and the Alzheimer’s Disease and Related Disorders Asso-
ciation criteria.?®*! Individuals with AD dementia were required
to have Mini-Mental State Examination (MMSE)>? scores between
20 and 26 and a Clinical Dementia Rating (CDR) score of 0.5 to
1at baseline.*® Qualifying individuals with mild cognitive impair-
ment (MCI) had memory concerns but no significant functional
impairment, scored between 24 and 30 on the MMSE, had a glob-
al CDR score of 0.5, had a CDR memory score of 0.5 or greater,
and had objective memory impairment on the Wechsler Memory
Scale-Logical Memory II test.>* The controls had MMSE scores
between 24 and 30, had a global CDR score of O, and did not meet
criteria for MCIand AD. Individuals were excluded if they refused
or were unable to undergo MRI; had other neurologic disorders,
active depression, a history of psychiatric diagnosis, a history of
alcohol or other substance dependence within the past 2 years;
had less than 6 years of education; or were not fluent in English
or Spanish. The full list of inclusion and exclusion criteria can be
accessed on pages 23 to 29 of the online ADNI protocol (http:
//adni.loni.usc.edu/wp-content/uploads/2010/09/ADNI
_GeneralProceduresManual.pdf). Written informed consent was
obtained from all participants, and all data were deidentified.

Gene Variant Selection and Imputation
The ADNI-1 participants were genotyped using the Illumina

Human610-Quad BeadChip array (Illumina Inc), whereas the
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ADNI-2 and the ADNI-Grand Opportunity (GO) participants
were genotyped using the Illumina HumanOmniExpress
BeadChip (Illumina Inc) according to the manufacturer’s pro-
tocol. We focused on the 20 well-established AD risk genes
identified and validated in the largest AD GWASs to date.!01®
In addition to the variants reported in these articles, we in-
cluded all other variants that were previously associated with
brain amyloidosis!'®!® (eTable 1 in the Supplement), which
yielded a total of 36 variants.

Missing genotypes (eTable 2 in the Supplement) were im-
puted using MACH and minimacin a 2-stage procedure using the
1000 Genomes project pilot data as a reference panel. Minimac
yielded the posterior probabilities of the imputed genotypes at
ungenotyped marker loci for each individual. The threshold to
accept each imputed genotype was set at 1% = 0.30.%°

Nine genes were represented by more than 1 single-
nucleotide polymorphism (SNP). Because linkage disequilib-
rium (LD) introduces colinearity bias, we performed LD analy-
ses followed by Cohen « statistics (eFigure 1 and eTable 3 in
the Supplement). When choosing between 2 variants with sig-
nificant overlap (high LD and high «), we retained the variant
with least data missingness. Our final number of variants was
thus reduced to 27. ABCA7, BIN1, CLU, CR1, ephrin receptor
EphAl (EPHAI) (OMIM 179610), and sortilin-related receptor
(SORLI) (OMIM 602005) were represented with more than 1
variant in the analyses (eTable 3 in the Supplement).

Allele frequencies for each gene variant were assessed.
Genotypes were collapsed when the minor allele homozy-
gote frequency was less than 2% as follows: ABCA7 rs3764650
GG/GT vs TT, Cass scaffolding protein family member 4 (CASS4)
(HGNC 15878) 157274581 CC/TC vs TT, CLU 159331949 AG/GG
vs AA, desmoglein 2 (DSG2) (OMIM 125671) rs8093731 TT/TC
vs CC, fermitin family homologue 2 FERMT2 (OMIM 607746)
1s17125944 CC/TC vs TT, and SORLI rs112183431 CC/TC vs TT.
The remaining variants were coded by minor allele dosage.

Florbetapir F 18 PET Data Acquisition Protocol and Analyses
The florbetapir F 18 PET acquisition and preprocessing proto-
cols are available at http://www.adni-info.org. In our main
analyses, we used the mean whole- “brain standard uptake vol-
ume ratios (SUVRs) from University of California, Berkeley
downloaded from the ADNI database (http://adni.loni.usc
.edu). This variable was obtained by averaging the SUVRs
obtained using whole cerebellum as the reference region across
the frontal, anterior-posterior cingulate, lateral-parietal, and
lateral-temporal gray matter regions.® The University of
California, Berkeley, protocols for ®F-florbetapir preprocessing,
coregistration, and normalization have been previously
described.>®

To visualize the regional pattern of associations in 3 di-
mensions, we downloaded all preprocessed ®F-florbetapir data
from the Laboratory of Neuroimaging Image Data Archive
(https://ida.loni.usc.edu). We aligned the images to the
corresponding MRI from the same visit, normalized to MNI
space using measures obtained from the MRI spatial
transformation and intensity normalized to the intensity of the
whole cerebellum reference region to create SUVR images, as
previously described.>”
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Statistical Analysis

R Statistical Analyses

Clinical and demographic characteristics (age, sex, educa-
tional level, MMSE, APOE €4 genotype, and diagnosis) for each
variant were compared using t tests or x? tests with 2-sided
Pvalues as appropriate. Stepwise multivariable linear regres-
sion models with all 27 AD risk variants were performed first
in the pooled sample and second in each diagnostic category
using amyloid PET mean SUVR as the outcome measure. An
additional model in the pooled sample using only amyloid-
positive individuals (SUVR>1.17) is available in the eResults in
the Supplement. All regression models included age, sex, and
APOE €4 genotype as covariates. The regression model for the
pooled sample was also corrected for diagnosis. The decision
to exclude variables was based on the Akaike information cri-
terion critical P value threshold of .16.3® Because we included
only previously validated candidate genes, our significance
threshold was set at P < .05. Correction for false discovery rate
(FDR) was applied.

Analyses in Imaging Space

All imaging analyses were performed in an exploratory fash-
ion. To explore the spatial distribution of the associations, we
reproduced the final stepwise regression models using voxel-
wise regression in Statistical Parametric Mapping 8 (SPM8;
Wellcome Department of Cognitive Neuroscience). The SPM8
models included all variants retained in the R statistical mod-
els (including those that were retained based on the Akaike in-
formation criterion) covaried for age, sex, and APOE €4 geno-
type. The pooled model also included diagnosis as a covariate.
Because of the exploratory nature of our secondary results, we
allowed a less stringent visualization threshold: voxelwise
threshold of P < .01 (uncorrected) with a minimum cluster size
(k) of 50 voxels. We also computed familywise error (FWE) and
FDR-corrected cluster and peak statistics as appropriate.

. |
Results

The study population was composed of participants from the
ADNI-1, ADNI-2, and ADNI-GO stages®° and consisted of 322
controls, 496 individuals with MCI, and 159 individuals with
AD who had available GWAS and ®F-florbetapir PET data (mean
[SD]age, 74 [7.5] years; 535 [54.8%] male and 442 [45.2%] fe-
male). Group comparisons of demographic characteristics and
distribution of the genotypes that were retained in the regres-
sion models are given in Table 1. APOE €4 had significant as-
sociations with brain amyloidosis (eFigure 2 in the Supple-
ment). There were no significant differences in age, sex,
educational level, MMSE score, and APOE &4 distribution be-
tween carriers and noncarriers or by allele dosage for any of
the genotypes except for zinc finger CW-type and PWWP do-
main containing 1 (ZCWPWI1) (HGNC 23486) for which risk
allele homozygotes were less educated (P = .02).

Pooled Sample
In the pooled sample, the stepwise linear regression model
achieved an R? of 0.35 (95% CI, 0.33-0.37; P < .001). ABCA7
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Table 1. Demographic Characteristics and Distribution of Genotypes

Control Group MCI Group AD Dementia Group
Variable (n=322) (n =496) (n =159) P Value
Age, mean (SD), y 75 (6.5) 73 (7.8) 75 (7.8) <.001
Male sex, No. (%) 156 (48.4) 284 (57.3) 95 (59.7) .02
Educational level, mean (SD), y 16.6 (2.6) 16.2 (2.7) 15.9 (2.7) .03
MMSE score, mean (SD) 28.9 (2.1) 27.8 (2.6) 22.8 (2.9) <.001
APOE €4,0/1/2, % 72.4/25.8/1.9 53.4/37.3/9.3 32.7/48.4/18.9 <.001
Amyloid positive, No. (%) 85 (26.4) 252 (50.8) 133 (83.6) <.001
ABCA7 rs3752246, % 0/1/2 alleles 69.3/28.3/2.5 67.7/28.4/3.8 64.8/30.8/4.4 47
ABCA7 53764650, % 0/1 or 2 alleles ~ 82.9/17.1 81.3/18.8 83.6/16.4 I
CLUrs11136000, % 0/1/2 alleles 35.4/50.6/14.0 35.9/49.6/14.5 39.6/44.7/15.7 91
CLUrs9331949, % 0/1 or 2 alleles 94.7/5.3 96.6/3.4 94.3/5.7 .32
DSG2 rs8093731, % 0/1 or 2 alleles 97.8/2.2 98.0/2.0 98.1/1.9 .98
EPHA1rs11771145, % 0/1/2 alleles 44.7/43.8/11.5 44.8/42.3/12.9 33.3/49.7/17.0 .02
FERMT2 rs17125944, 82.9/17.1 85.1/14.9 81.8/18.2 .53
% 0/1 or 2 alleles
PICALM rs3851179, % 0/1/2 alleles 40.4/46.6/13.0 42.3/45.2/12.5 42.8/48.4/8.8 .59
PTK2B rs28834970, % 0/1/2 alleles 42.2/41.9/15.8 43.1/42.7/14.1 39.0/46.5/14.5 74
SORL1rs1131497,% 0/1/2 alleles 33.5/47.8/18.6 31.9/52.0/16.1 38.4/48.4/13.2 .26
ZCWPWI 151476679, % 0/1/2 alleles  50.6/40.1/9.3  52.4/39.5/8.1 547/37.7/15 .62 Abbreviation: MMSE, Mini-Mental

State Examination.

rs3752246 (x? = 8.38, FDR-corrected P < .001), EPHAI
rs11771145 (x® = 4.08, FDR-corrected P = .03), and PICALM
rs3851179 (x? = 3.67, FDR-corrected P = .04) were signifi-
cantly associated with mean SUVR in the pooled sample. Other
associations were as follows: ZCPWPW1 151476679 (x? = 2.74,
FDR-corrected P = .08), FERMT2 rs17125944 (x? = 3.63, FDR-
corrected P = .08), and protein tyrosine-kinase 23 (PTK2B)
1528834970 (OMIM 601212) (x* = 2.52, FDR-corrected P = .01).
ABCA7 153764650 and CLU rs11136000 were included in the
model based on the Akaike selection criterion. A reduced model
that included only age, sex, educational level, and APOE &4
achieved areduced R? 0of 0.31(95% CI, 0.29-0.33). The between-
model difference in R? and reduced R? was 0.038 (95% ClI,
0.029-0.047). Figure 1 and Figure 2 show these associations
and Table 2 gives FWE- and FDR-corrected cluster-level
results and within-cluster peak associations for genetic vari-
ants identified in our models.

Interaction Analyses

To further test for the presence of a stage-specific associa-
tion, we conducted a linear regression analysis in the pooled
sample including interaction terms. FERMT2 was the only vari-
ant that had a significant interaction (FERMT2 x diagnosis
X2 = 3.53, FDR-corrected P = .05). The effect sizes for the re-
maining genes remained unchanged. Figure 3 shows the
B-coefficient maps of the main effect size of FERMT2 and its
interaction with diagnosis as well as the FERMT?2 effect size
within each diagnostic group.

Exploratory Analyses Within Diagnostic Groups

In the control group, the model achieved an R? of 0.17 (95% CI,
0.14-0.21; P < .001; reduced R? = 0.14; 95% CI, 0.11-0.17; R?-
reduced R? difference = 0.032; 95% CI, 0.015-0.05). Signifi-
cant associations were seen for PICALM rs3851179 (x? = 3.56,
FDR-corrected P = .04). The association for ABCA7 rs3764650
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was X2 = 3.16 (FDR-corrected P = .09). ABCA7 1s3752246 was
included in the model based on the Akaike selection criterion.

In the MCI group, the model achieved an R? of 0.3 (95%
CI, 0.27-0.32; P < .001; reduced R? = 0.24; 95% CI, 0.21-0.27;
R?-reduced R? difference = 0.058; 95% CI, 0.042-0.074).
ABCA71s3752246 (x? = 7.22, FDR-corrected P = .002), EPHAI
rs11771145 (x2 = 3.74, FDR-corrected P = .03), FERMT2
517125944 (x? = 10.38, FDR-corrected P = .002), and SORLI
rs1131497 (x2 = 3.66, FDR-corrected P = .03) were signifi-
cantly associated with mean SUVR. The association for ABCA7
1s3764650 was X2 = 2.9 (FDR-corrected P = .09).

In the dementia group, the model achieved an R? of 0.35
(95% CI, 0.29-0.41; P < .0001; reduced R? = 0.22; 95% CI, 0.16-
0.28; R?-reduced R? difference = 0.13; 95% CI, 0.09-0.17).
Other associations were as follows: EPHA11s11771145 (x* = 5.05,
FDR-corrected P = .01), ZCWPWI rs1476679 (x? = 3.79, FDR-
corrected P = .04), DSG2 rs8093731 (x? = 3.27, FDR-corrected
P =.08), CLU rs9331949 (x? = 4.09, FDR-corrected P = .058),
and SORLI 1s1131497 (x2 = 2.51, FDR-corrected P = .08).

Figure 1and Figure 2 present exploratory visualization of
these associations, and Table 2 presents the FWE- and FDR-
corrected cluster-level results and within-cluster peak asso-
ciations for genetic variants identified in our models.

|
Discussion

Improved understanding of the polygenetic risk factors that
are associated with AD could enable personalized risk assess-
ment. To our knowledge, this is the first comprehensive analy-
sis of the association of the top 20 AD risk variants with brain
amyloidosis. We were able to confirm the previously re-
ported association between ABCA7 and brain amyloidosis as
described by Shulman et al'® and Hughes et al.!® Our study
found that after APOE €4, ABCA7 has the strongest associa-
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Figure 1. Association of Alzheimer Disease Risk Genes With Brain Amyloidosis in the Pooled Sample
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Images were visualized using P < .01 (uncorrected) and cluster size (k) of 50 voxels. Scale indicates T values.

tion with amyloid deposition. We were unable to confirm the
reported associations of CRI?° likely because the associa-
tions previously reported were determined using a univari-
able approach. It is plausible that the previously reported CR1
association is better accounted for by other AD-related genes,
which were not part of the original analysis. We also found evi-
dence of a stage-dependent gene association of FERMT2 with
brain amyloidosis. This is, to our knowledge, the first report
of such an association.

Several genes had associations with brain amyloidosis.
ABCA7 encodes a 2146-amino acid ABC family transporter
protein.*® The ABC protein family is responsible for the trans-
port of a variety of molecules across cellular membranes, pri-
marily lipids. ABCA7 is expressed in nervous tissue, with the
highest expression in microglia.*! Loss of function of ABCA7
was associated with increased [-secretase cleavage of amy-
loid precursor protein (APP), leading to higher levels of A in
vitro and in vivo.*? A previous ADNI study*® analyzed the as-
sociations of 15 ABCA7 loci with cerebrospinal fluid AR and
florbetapir SUVR. Three variants (rs3752242, rs3752240, and
1s4147912) were significantly associated with brain amyloido-
sis but not with brain atrophy. One of these 3 SNPs (rs3752242)
is in LD with ABCA7 rs3752246, lending support to our find-

JAMA Neurology March2018 Volume 75, Number 3

ings. Further evidence of the role of ABCA7 in AD comes from
astudy** that reported one rare missense variant (rs72973581;
minor allele frequency of 4.3%) to confer a significant protec-
tion against AD. In a previous publication,*” a late but pro-
found effect of ABCA7 was found on neurodegeneration.
Individuals with AD dementia had significant associations of
ABCA7 153752246 with gray matter density throughout the
brain. Individuals with MCI and controls did not have such
an association.

CLU encodes for clusterin, an extracellular chaperone pro-
tein that consists of 427 amino acids. CLU is highly expressed
in neurons and ependymal cells.*® It seems to be involved in
a variety of processes throughout the body, including synap-
tic maintenance and programmed cell death.*”® Under physi-
ologic conditions, clusterin reduces aggregation and pro-
motes clearance of AB.*° CLU is highly expressed in the
hippocampi in patients with AD and Pick disease.>° Clusterin
protein levels are also elevated in AD, and its pattern of dis-
tribution correlates positively with that of AB42 and AB40 in
postmortem tissue.>!

DSG2 encodes a cell adhesion desmosome cadherin pro-
tein. DSG2 binds plaque proteins and intermediate filaments
and seems to play arole in inflammation.>? Although this gene
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Figure 2. Association of Alzheimer Disease Risk Genes With Brain Amyloidosis in the Normal Control, Mild Cognitive Impairment, and Dementia Groups
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Images were visualized using P < .01 (uncorrected) and cluster size (k) of 50 voxels. Scale indicates T values.
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Figure 3. B-Coefficient Maps of the Main Association of FERMT2 and Its Interaction With Diagnosis and the Association of FERMT2

Within Each Diagnostic Group
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Main association of FERMT2 with brain amyloidosis (A), its interaction with diagnosis (B), and the association of FERMT2 with brain amyloidosis in each diagnostic

group (C) displayed using Statistical Parametric Mapping 8.

was reported to be associated with AD risk, a mechanistic ex-
planation of this association has not yet been elucidated. DSG2
is expressed in epithelial-derived tissues, such as epithelial cell
lines,>® epithelial malignant tumors,>* and the brain, espe-
cially the corpus callosum region.>>~>” We found an associa-
tion with amyloid deposition later in the disease course, indi-
cating a late modulatory effect on amyloid deposition.

EPHAI encodes a 976-amino acid protein that belongs to
the EPH family of receptor tyrosine kinases.>® EPHAI plays a
role in contact-dependent signaling and nervous system
development.>9-%2 EPHALI is highly expressed in the cerebral
cortex and hippocampus.®® A previous analysis®* of ADNI-1
datareported that EPHAI 1511771145 is associated with less brain
atrophy and higher cerebral metabolic rate in MCI. Analyses
of the cognitively normal imaging subcohort of the Ginkgo
Evaluation of Memory study implicated another EPHAI al-
lele (1s11767557), which is in LD with ours, to have a negative
effect on brain amyloidosis.'®

FERMT?2 encodes for a 680-amino acid scaffolding extracel-
lular matrix protein that plays a role in cell adhesions.®*>¢®
FERMT2is expressed in the brain (http://www.proteinatlas.org
J/ENSGO0O000073712-FERMT2/tissue). FERMTZ2 is upregulated
in atherosclerotic plaques, suggesting a possible role in
inflammation and leukocyte extravasation.®” FERMT2 is a
coactivator of B3-integrin®®—a microglial and reactive astrocyte
marker that plays arole in poststroke brain tissue recovery.®%7°
FERMT?2 has also been associated with a cognitive decline in
AD”! and modifies tau neurotoxicity in a Drosophila model.”?

jamaneurology.com

PICALM encodes a 652-amino acid protein that binds to
clathrin’s heavy chain and assists in vesicle assembly and
endocytosis.”® PICALM was recently identified as a risk gene
for late-onset AD.”* PICALM colocalizes with APP. PICALM
knockdown resulted in a reduction in the amount of APP
internalized and a reduction in AB generation.” In a previ-
ous study,”® PICALM was found to modulate the clearance
of tau and thus autophagy. PICALM has been associated
with brain changes in AD. Morgen et al”” reported a negative
association with prefrontal brain volume and working
memory, whereas Biffi et al”® found associations with hip-
pocampal amygdalar and white matter lesion volume, as
well as with entorhinal, parahippocampal, and temporal
pole cortical thickness.

SORLI encodes a 2186-amino acid protein from the low-
density lipoprotein receptor family.”® SORLI readily binds
APOE and lipoprotein lipase and localizes to both the Golgi
apparatus and the plasma membrane, where it likely medi-
ates endocytosis.®° SORLI plays a role in APP trafficking and
recycling.®! SORLI is downregulated in lymphoblasts and
cortical pyramidal neurons of patients with AD.%2 The neu-
ronal SORL1 protein level determines cognitive decline and
conversion from MCI to AD.®2 The protein level also corre-
lates with the levels of the APP soluble products that result
from B-secretase cleavage.®* An SNP in LD with our variant
(rs1133174) has also been linked to brain atrophy in AD.8>

The ZCWPWI1 gene codes for a 648-amino acid protein.
ZCWPWI1 is considered to be a risk gene for late-onset AD.%®
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Its proposed mechanism of action is through epigenetic
regulation of gene expression.57-8°

Strengths and Limitations

Several strengths and limitations of our study warrant
discussion. One of the major strengths lies in the careful
clinical, biomarker, and genetic characterization of all indi-
viduals enrolled in the ADNI. The ADNI protocol uses uni-
fied subject assessment, standardization of all imaging,
biofluid and DNA and RNA data collection and processing,
and meticulous data quality control across all study sites.
Another strength of the study is the fairly large sample size
that allowed us to achieve enough statistical power to test
the associations of 27 AD-associated risk variants using a
polygenic model.

A major limitation of our study is that we only report cross-
sectional analyses; thus, we cannot make definitive conclu-
sions regarding genetic effects on amyloid deposition over time.
From our cross-sectional observations across the disease con-
tinuum, we drew conclusions about early vs late genetic in-

Association of Alzheimer Disease Risk Variants With Brain Amyloidosis

fluences on brain amyloidosis that will need to be further tested
using a longitudinal design, which is what we plan to do next.
Another limitation of our work is that the sample size was not
big enough to allow us to test for gene-gene and gene-
environment interactions. Last but not least, the ADNI uses rig-
orous exclusion criteria typical of clinical trials, rendering the
ADNI cohort not representative of the general population,
which may negatively affect the generalizability of our re-
sults. Thus, our next steps will be to validate our findings in a
large, independent, longitudinal cohort.

.|
Conclusions

We found an association of genetic variants with brain amy-
loidosis, the salient pathognomonic feature of AD. Four of the
genetic variants reported here, ABCA7, CLU, EPHA1, and SORLI,
have been previously linked to the amyloidogenic AD path-
ways. To our knowledge, we are the first to report a stage-
specific association for a genetic variant (ie, FERMT2).
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Additional Information: Data used in preparation
of this article were obtained from the ADNI
database (http://adni.loni.usc.edu). As such, the
investigators within the ADNI contributed to the
design and implementation of ADNI and/or
provided data but did not participate in analysis or
writing of this report. The ADNI Imaging Core
contributed to the image preprocessing, the
members of the ADNI Biomarker Core performed
the cerebrospinal fluid biomarker analyses, and the
investigators at the University of Pittsburgh
performed the Pittsburgh compound B standard
uptake value ratio analyses.
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