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Semi-parametric Bayes Conditional Graphical Models

for Imaging Genetics

Suprateek Kundu and Jian Kang

Abstract: Motivated by the need for understanding neurological disorders, large-scale imag-

ing genetic studies are being increasingly conducted. A salient objective in such studies is to

characterize important neuroimaging biomarkers such as the brain functional connectivity,

as well as genetic biomarkers which are predictive of disorders. However, typical approaches

for estimating the group level brain functional connectivity do not account for potential

variation resulting from demographic and genetic factors, while usual methods for discover-

ing genetic biomarkers do not factor in the influence of the brain network on the imaging

phenotype. Hence, it is of interest to develop methods to jointly estimate the brain network

after accounting for heterogeneity, and infer significant genetic biomarkers. We propose a

novel semi-parametric Bayesian conditional graphical model for joint covariate selection and

graphical model estimation for this purpose. The proposed approach specifies novel priors on

the regression coefficients and the graph space, which clusters brain regions having similar

activation patterns depending on covariates, and encourages denser and sparse connections

within and across clusters respectively. The method is straightforward to implement via a

Markov chain Monte Carlo. We apply the approach to data obtained from the Alzheimer’s

Disease Neuroimaging Initiative, and demonstrate numerical advantages via simulations.

Keywords: brain functional modules; conditional graphical model; imaging genetics; semi-

parametric Bayes; variable selection.
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1. Introduction

During the last two decades, there have been tremendous advances in both neuroimaging

and high-throughput genotyping technology, which has resulted in the development of an

emergent interdisciplinary field known as imaging genetics, focusing on the genetic dissection

of neuroimaging and clinical phenotypes. The goal of imaging genetics studies is to discover

the brain-wide, genome-wide association patterns which drive complex neurological disorders

(such as Alzheimer’s disease, autism spectrum disorder, major depressive disorder, and so

on). A key objective in these studies is to characterize important neuroimaging and genetic

biomarkers which are predictive of psychological disorders.

One such important neuroimaging biomarker that has shown tremendous promise is the

group level brain functional connectivity (Biswal et al., 1995; Smith et al., 2012; Huang

et al., 2010, Kim et al., 2015), which characterizes the coherence of the neural activities

among distinct brain regions for a collection of subjects. However typical approaches for

estimating the group level brain network often fail to account for heterogeneity across sub-

jects resulting from demographic, clinical and genetic variations, which may lead to spurious

associations and erroneous inferences. In addition to functional connectivity, several genetic

biomarkers have been shown to be predictive of neurological disorders. Significant genetic

biomarkers are often inferred by modeling the association between gene products/ variants

and the brain imaging phenotype (Stein et al., 2010; Zhu et al. 2014; Stingo, 2013), since

some neuroimaging traits are potentially closer to the action of the gene compared to other

clinical phenotypes (Mier et al., 2010; Munafo et al., 2008). However, existing approaches for

detecting such associations usually do not take into account the underlying brain functional

network influencing the imaging phenotype.
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To our knowledge, the body of work for inferring genetic associations with the imaging

phenotype to discover genetic biomarkers for neurological disorders, and the literature on es-

timating the brain functional connectivity, have developed in a largely independent manner.

In fact there is a scarcity of approaches which can achieve the two goals simultaneously. We

seek to bridge such a gap through this work, wherein we propose to jointly (a) estimate the

group level brain functional network, after accounting for extrinsic sources of variation; (b)

infer significant genetic and demographic associations with the imaging phenotype, leading

to the discovery of important biomarkers; and (c) identify functional modules comprising

brain regions having similar activation patterns influenced by covariates, and decipher the

connectivity in each of these modules. Inferring functional modules is an appealing fea-

ture of the proposed approach, which is expected to provide deeper insights into the brain

organization, as explained in the sequel.

A natural approach to fulfilling the stated goals is conditional graphical models, which

structures the multivariate outcome as a sum of a linear term involving covariates and

a Gaussian residual encapsulating the graphical structure. The estimated graph under a

conditional graphical model provides a meaningful group level brain network comprising

intrinsic connections after teasing out external sources of variation. Another advantage

of the model is being able to compare brain networks across multiple groups, where it is

imperative to account for variations due to genetic and demographic factors, in order to

make the comparison across groups meaningful. This is particularly relevant for our real

data application where we seek to compare the functional connectivity for subjects with

Alzheimer’s disease, subjects with mild cognitive disorder, and healthy individuals. In this

work, we focus on sparse brain networks which is supported by findings showing that a brain
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region usually interacts with only a few other regions in neurological processes (Stam et. al,

2007; Suprekar et. al, 2008).

To our knowledge, there is a limited literature for conditional graphical models, with the

primary application area being essentially limited to genetic studies. Frequentist approaches

such as Yin & Li (2011), Li et. al (2012), and Cai et. al (2013) mainly focus on graph

estimation after adjusting for covariates. However, the performance of the variable selection

by those methods is not well assessed. On the other hand, the Bayesian approach proposed

by Bhadra & Mallick (2012) assumes the same inclusion status for each covariate across all

nodes (imaging phenotypes in our case), which makes this approach clearly inadequate for

imaging genetics applications, as evidenced in simulations.

A key challenge in conditional graphical models is achieving good variable selection and

graphical model estimation simultaneously, with these two goals being closely intertwined.

In particular, model mis-specification in terms of an overly sparse coefficient matrix can lead

to spurious associations between nodes due to lack of adjustment for confounders (as noted

in Yin & Li, 2011), while an artificially dense coefficient matrix will likely lead to over-fitting

which may result in poor estimates of partial correlations (as evidenced in section 3). Ideally,

a parsimonious Bayesian approach is desirable, which can provide a balance between the two

goals, while providing uncertainty quantification to address the heterogeneity inherent in

imaging genetics applications.

To achieve objectives (a)-(c), we propose a flexible Bayesian conditional graphical model

for joint covariate selection and graphical model estimation. The proposed model clusters

the columns of the regression coefficient matrix under an infinite mixture of Laplace prior,

which results in dimension reduction and shrinkage. The brain functional connectivity is
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estimated by a novel class of semi-parametric graphical priors depending on the unknown

cluster allocations, which specify sparse associations across clusters, but allow for denser con-

nectivity within a cluster. The approach leads to clusters of brain regions, called functional

modules, characterized by similar activation patterns depending on covariates and distinct

sub-networks, and is designed to mimic the brain organization suggested by several previous

studies as explained below. The method is straightforward to implement via a Markov chain

Monte Carlo (MCMC). Associations between the imaging phenotype and covariates are in-

ferred via a post-MCMC approach involving multiplicity corrections, and it is also possible

to determine the subset of covariates which influence a particular cluster.

The emphasis on discovering functional modules and corresponding sub-networks in goal

(c) is motivated by recent studies suggesting that the brain functional connectivity pattern

is highly complex such that a single cognitive function can recruit multiple distributed local

clusters of neurons (Bullmore & Sporns, 2009), with different neuronal clusters potentially

responsible for a large variety of brain states and functions. Moreover, widely used methods

relying on independent component analysis or ICA (Guo, 2011; Guo & Tang, 2013), also yield

clusters of regions of interest in the brain corresponding to different source signals, which can

be likened to functional modules. Further evidence about the presence of functional modules

stems from another recent work by Wang et al. (2016) demonstrating that the brain network

(derived using partial correlations) can be divided into different modules, with very sparse

connections across these modules but denser connections within each module. However, the

above methods do not account for covariate information and hence are not strictly applicable

to our problem of interest.

The paper is organized as follows. Section 2 proposes our semi-parametric conditional
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graphical model and develops a posterior computation scheme, section 3 lays out our simu-

lation study, and section 4 describes results of real data analysis using ADNI data.

2. Methodology

2.1 Semi-parametric Conditional Graphical Models

Let X and Z be the n × p and n × q dimensional outcome and covariate matrices re-

spectively, with the i-th row of X and Z being denoted as xi and zi, i = 1, . . . , n. In our

imaging genetics applications, xi corresponds to the multivariate imaging phenotype, while

zi denotes the supplementary genetic and demographic information for the i-th individual.

We assume that the rows of X have been centered, thus, it is not necessary to include an

intercept term. Consider the following conditional graphical model

xi = zi(β1, . . . ,βp) + εi, εi ∼ N(0,ΣG), ΣG ∼ π(ΣG|G),

βk =
∞∑
l=1

wlδηl
, ηl ∼

q∏
l=1

DE(ηjl;λj), (1)

where δθ denotes a point mass at θ, N(·) and DE(·) denote Gaussian and double exponen-

tial/Laplace distributions respectively, εi denotes the residual, βk = (βk1, . . . , βkq)
T is the

vector of regression coefficients which characterizes the effect of covariates on the k-th out-

come measurement (k = 1, . . . , p), and G ∼ π(G) denotes the graph whose prior specification

will be discussed below in (2). The prior of the covariance matrix is defined conditional on

the graph G, and is also discussed in (2). We denote B = (β1, . . . ,βp) as the coefficient

matrix, so that xi = ziB + εi in (1).

The prior on the regression coefficients in (1) follows an infinite mixture of Laplace

distributions, with the k-th component having a shrinkage parameter λk, and an associated
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weight wk, , k = 1, . . . ,∞. The weights are structured as stick-breaking weights, so that

wj = νj
∏

l<j(1− νl), νl ∼ Beta(1,M), with
∑∞

j=1wj = 1. The mixture distribution enables

dimension reduction by clustering the columns of B into distinct groups having varying

degrees of shrinkage, with each cluster also translating to a group of measurements/nodes

which are related to the covariates by similar magnitudes. In the special case when λj = λ for

all j, π(βk), k = 1, . . . , p, reduces to a Dirichlet process mixture of Laplace distributions with

a Laplace base measure having precision parameter M (Sethuraman, 1994). The parameter

M controls the total number of clusters (H) which is random, with a high value of M

implying more clusters. The ingenuity of our approach lies in proposing a novel class of

semi-parametric graphical priors π(G) in (2) which translates the parsimony implied by the

clustering of the columns of B into sparsity in the precision matrix, by assuming sparse

connections across distinct clusters.

Let the support of the graph space be restricted to the class of decomposable graphsM.

To construct the prior onM, suppose there are H clusters induced under the mixture prior

in (1), and denote the clusters as S(β) = (S1, . . . , SH), with Sh containing the indices of ph

nodes belonging to cluster h (
∑H

h=1 ph = p). Define the edge set E under the graph G as

E := {e(k, l), k < l, k, l = 1, . . . , p}, where e(k, l) takes values 1 or 0 depending on whether

the (k, l)-th edge is present in E or not. We formalize the semi-parametric graphical prior

π(G | S1, . . . , SH), defined conditional on cluster allocations, as follows

e(k, l) ∼ Ber(ω1)1(∪Hh=1(k ∈ Sh, l ∈ Sh)) + Ber(ω0)1(∪h6=h′k ∈ Sh, l ∈ Sh′ , h 6= h′), k 6= l,

ω1 ∼ Be(aω,1, bω,1), ω2 ∼ Be(aω,0, bω,0), ΣG | G ∼ HIWG(b,D), (2)
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where 1(·) is the indicator function, HIW (b,D) refers to the hyper inverse-Wishart prior

with scale matrix D and b degrees of freedom, and Ber(ω) denotes the Bernoulli distribution

with inclusion probability ω. The scale matrix is assumed to be diagonal in our work, i.e.

D = diag(d1, . . . , dp), with dj ∼ π(dj), j = 1, . . . , p. The hyper inverse-Wishart prior in (2)

restricts the support of Σ−1G to a space of positive definite matrices having zero off-diagonal

elements corresponding to absent edges. We refer to the prior on the covariance in (2) as the

semi-parametric hyper inverse-Wishart prior or spHIW, due to dependence on the unknown

cluster allocations.

Formulation (2) specifies the edge inclusion probabilities as ω1 or ω0, depending on

whether the edge corresponds to two nodes belonging to the same cluster or different clus-

ters. By choosing hyper-parameters aω,0, bω,0, to have a small prior mean, and aω,1, bω,1, to

have a larger prior mean, one can encourage a higher density of edges within clusters, and

sparse edges across clusters. The proposed approach thus results in clusters of nodes such

that there are sparse connections between groups, but denser connections within each group.

The membership of each group is influenced by covariates, and every group comprises simi-

larly activated nodes which are connected by a distinct sub-network. Our approach naturally

allows for detection of functional modules, which is expected to provide deeper insights into

the organization of the human brain.

We can obtain an explicit form for the prior in (2) as

π(G | S1, . . . , SH) = K−1
(
ω
aω,1+t1G−1
1 (1− ω1)

bω,1+
∑H

h=1 ph(ph−1)/2−t1G−1
)

×
(
ω
aω,0+t0G−1
0 (1− ω0)

bω,0+p(p−1)/2−
∑H

h=1 ph(ph−1)/2−t0G−1
)
,

8



where G ∈ M, K is the normalizing constant, and t1G, t0G, represent the number of edges

within and across clusters respectively. We noted previously that, when λj = λ for all

j = 1, . . . ,∞, the prior on the regression coefficients in (1) is a Dirichlet process mixture of

Laplace distributions. In such a case, we can use results from Kyung et al. (2009) to obtain

the following form of the prior on the graph space after marginalizing out the clustering

parameters

π(G) =
Γ(M)

Γ(M + p)

p∑
H=1

MH
∑

(S1,...,SH):|S(β)|=H

H∏
h=1

Γ(ph)π(G | S1, . . . , SH)1(G ∈M),

where the set {(S1, . . . , SH) : |S(β)|= H} contains all possible clustering memberships given

that the number of clusters is fixed at H, and Γ(·) denotes the Gamma function.

We note that given a decomposable graph G having cliques C1, . . . , Ck, and separators

Q2, . . . , Qk, the likelihood can be written as

L(X|Z,B,G) =

∏K
k=1 L(X•,Ck

|Z,B•,Ck
)∏K

k=2 L(X•,Qk
|Z,B•,Qk

)
,

L(X•,Ck
|Z,B•,Ck

) =
π−n/2Γ|Ck|((b+ n+ |Ck|−1)/2)[det{DCk

}]−n/2

Γ|Ck|((b+ |Ck|−1)/2)[det{In + X̃•,Ck
D−1Ck

X̃T
•,Ck
}](b+|Ck|−1)/2

, (3)

using results in section 5.3 in Lauritzen (1996) and equation (45) in Dawid & Lauritzen

(1993). Here, |Ck| denotes the cardinality of Ck, DCk
is a diagonal matrix with diagonals

{ds, s ∈ Ck}, and X̃•,Ck
= X•,Ck

− ZB•,Ck
, where X•,Ck

, B•,Ck
represent sub-matrices of X,B,

with columns corresponding to Ck. In the situation where there are two or more clusters

with no edges between them, the above likelihood can be factorized even further leading

to speed-ups in computation. The form of the likelihood in (3) is used when updating the

graph using MCMC, and this update can be performed efficiently even for large p.
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2.2 Variable Selection

We propose a post-MCMC variable selection mechanism which proceeds by constructing

joint credible regions accounting for multiplicity corrections. The variable selection enables

us to infer (a) covariate influences on individual imaging phenotypes, and (b) subsets of

covariates influencing clusters of phenotypes, where each cluster is characterized by a distinct

sub-network and where a particular covariate may affect more than one cluster.

We construct rectangular credible regions incorporating multiplicity corrections as D :=

{βjk : βjk/std(βjk) > Uα∗ , j = 1, . . . , q, k = 1, . . . , p}, where std(βjk) is the standard deviation

for βkl, and α∗ is the multiplicity adjusted width of the credible intervals. The above credible

intervals enable us to test a set of local hypotheses H0,jk : |βjk|≤ U∗jk versus |βjk|> U∗jk for j =

1, . . . , q, k = 1, . . . , p, where the threshold for each regression coefficient is adjusted according

to it’s standard deviation, and hence is different from “hard” thresholding approaches which

choose a fixed threshold. The local hypothesis tests can be done using a t-test at a significance

level α∗ = α/(pq) under a Bon-ferroni correction. Although it is straightforward to use more

sophisticated alternatives such as the false discovery rate approach (Benjamini & Hochberg

1995), we use the Bon-feronni correction since it performs adequately for the examples we

considered.

2.3 Posterior Computation

We propose an efficient approximate posterior computation scheme using a parameter ex-

pansion strategy. Under the original formulation (1), the computation of cluster membership

probabilities different columns of B will require p matrix inversions of order p−1 each, which

can be computationally restrictive. We devise a parameter expanded model which altogether
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bypasses the need of inverting matrices when computing cluster memberships. We fit the

modified model

xi = ziB + αi + εi, εi ∼ N(0, δIp), αi ∼ N(0,ΣG), i = 1, . . . , n, (4)

where αi = (αi1, . . . , αip) can be interpreted as the intercept term, and δ ∼ Be(aδ, bδ) is the

residual variance. The prior on the graph and the covariance matrix is defined similarly as

in (2). Marginalizing out the intercept in (4) yields xi ∼ N(ziB,ΣG + δI) ≈ N(ziB,ΣG),

when δ ≈ 0, which essentially gives back our original formulation (1).

The computational advantage of (4) stems from the fact that all elements in the data

matrix X are independent conditionally on B,α1, . . . ,αn, δ. This allows the following form

of the likelihood times prior, conditional on the clustering (S1, . . . , SH)

L ∝
( n∏
i=1

N(xi; zi(ηs1 , . . . ,ηsp) + αi, δIp)N(αi; 0,ΣG)

)( H∏
h=1

q∏
l=1

DE(ηhl;λh)

)
π(ΣG | G)π(G|S1, . . . , SH), (5)

where sj ∈ {1, . . . , H}, j = 1, . . . , p, denote the cluster memberships. Under the above

likelihood, it is straightforward to compute cluster membership sj for the j-th column of B

independently of the other columns, in a computationally inexpensive manner which does

not involve matrix inversions. In practice, the approximation under (4) is implemented by

specifying a conjugate prior on δ with mode near zero and having a small variance such

that it results in posterior samples of δ = O(10−3). In our experience, this choice works

adequately for a variety of scenarios.

We use a MCMC for the posterior computation, which proceeds by (a) updating the clus-

ter memberships and cluster atoms conditional on the intercepts and the residual variance
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(δ); (b) updating the graph conditional on the cluster memberships, and the inverse covari-

ance matrix conditional on the graph; and (c) updating the intercepts and residual variance

conditional on the other parameters. We update the graph using a Metropolis-Hastings step

in a manner similar to Bhadra & Mallick (2012), where the proposal distribution changes a

non-zero element in the adjacency matrix to a zero element with probability 1− aG, and the

reverse proposal occurs with probability aG. Barring the graph, all remaining parameters in

(5) can be sampled via closed form posteriors. The MCMC steps are described in detail in

the Supplementary Materials.

Inferring optimal clustering and point estimate for the graph: Our computation

yields posterior samples of cluster membership allocations for each column of B. In order

to estimate the optimal clustering over MCMC iterations, we use the least squares criteria

in Dahl (2006). Letting S(m) denote the vector of cluster allocations at the m-th MCMC

iteration, the optimal cluster is selected as S∗ = arg minS(m),m=1,...,T

∑p
i=1

∑p
j=1(∆i,j(S(m)) −

π̂i,j)
2, where ∆i,j(S(m))=1 if (i,j) belong to the same cluster under S(m), and 0 otherwise,

m = 1, . . . , T , and π̂ is the estimated matrix of pair-wise probabilities of belonging to the

same cluster, computed over all MCMC iterations. The final estimated graph structure is

computed in a manner consistent with this optimal clustering, by computing the marginal

inclusion probabilities of edges using MCMC samples corresponding to the clustering S∗,

and including edges with high probabilities.

3. Simulation Studies

3.1 Description
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We consider three simulation settings (Cases I–III) with varying dimensions involving a

true model of the form xi ∼ N(ziB0,Σ0) where Σ0 is the true covariance matrix, and

B0 = (β01, . . . ,β0p) are the true regression coefficients. For Cases I and II the number of

non-zero rows in the coefficient matrix (B0) are 10 and 5 respectively, where the elements

in these non-zero rows are randomly set to 2,3, or 0, and the proportion of zeros are high

to ensure a sparse coefficient matrix. For both these cases, the inverse covariance matrix

Σ−10 = Ω0 is generated as follows. First, we generate Σ∗ having elements σ∗(l, l′) = 0.5

(
||l−

l′|+1|1.4−2|l−l′|1.4+||l−l′|−1|1.4
)
, l, l′ = 1, . . . , p, which corresponds to a fractional Gaussian

noise process with Hurst parameter as 0.7. We then invert Σ∗ to obtain Ω∗, and subsequently

fix all off-diagonal elements of Ω∗ to be zero if the absolute value is less than 0.05, to obtain

Ω∗1. Finally we rescale the diagonal elements of Ω∗1 as ω∗1,kk = 0.1+
∑p

j 6=k,j=1|ω∗1,jk| to obtain a

diagonally dominant matrix which is positive definite, denoted as Ω0 = Σ−10 . This is the true

precision matrix that is used to generate the data. The true graph G0 is obtained by including

all edges corresponding to an absolute partial correlation greater than 0. Note that the true

model is a violation of the clustering as well as the block diagonal assumptions inherent in

the proposed methodology. We consider dimensions (n, p, q) = (100, 80, 100), (100, 80, 200)

for Cases I and II.

For Case III, we fit our model (1)-(2) to the PET data for individuals with mild cogni-

tive impairment (MCI) obtained from the ADNI dataset, and then use the fitted model to

simulate data. The dataset in question contains PET measurements recorded from p = 42

regions of interest (ROIs) in the brain for each of the 121 samples (n), with additional in-

formation on q = 546 SNPs. The 42 regions reported in Table 1 were selected as in Huang

et. al (2010). These regions are distributed in the frontal, parietal, occipital, and temporal
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lobes, and are considered to be potentially related to Alzheimer’s disease. We fit our model

using dichotomized SNP data with value 1 if the minor allele frequency is 1 or 2, and 0 oth-

erwise. This fitted model which is used to generate data corresponds to a high dimensional

multivariate response regression model, having 546 covariates, and 140 edges.

We compare our approach (spHIW) to (a) the sparse seemingly unrelated regression

(SSUR) method in Bhadra & Mallick (2012) for simultaneous graphical model estimation

and variable selection; (b) a multivariate version of the Bayesian lasso (Park & Casella,

2008) denoted as BLASSO designed to perform variable selection; and (c) the frequentist

graphical lasso (Friedman et. al, 2007) denoted as GLASSO for graphical model estimation

without accounting for covariates; We wrote the MATLAB codes for implementing spHIW,

and BLASSO, while the code for SSUR was obtained from the authors of that article. The

GLASSO was implemented using the R package glasso.

For the Bayesian approaches, we ran 25,000 MCMC iterations with a burn in of 5,000.

The initial adjacency matrix for the proposed approach and SSUR was chosen to be identity

corresponding to a null graph, and the parameters in the hyper inverse-Wishart prior for

these approaches was defined as b = 3, D = dIp. We imposed a conjugate Gamma prior on

d which seemed to work well in a variety of scenarios. In addition, we specify independent

Gamma priors on λl, l = 1, . . . , q,, as well as M ∼ Ga(1, 1), and δ−1 ∼ Ga(1000, 1). All

results are reported over 50 replicates.

3.2 Comparison Criteria

We looked at several metrics for comparison, including (i) out of sample prediction in terms of

mean squared error or MSE; (ii) estimation of true regression coefficients in terms of L2 error;
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(iii) estimation of the precision matrix in terms of L1 error; (iv) area under the ROC curve

for variable selection; and (v) area under the ROC curve for graphical model estimation. The

predicted test samples were obtained using posterior predictive distributions under Bayesian

approaches, and this was used to compute MSE. However, it was not possible to report

MSE under GLASSO since it does not incorporate covariate information. Estimation of

the precision matrix and regression coefficients under our approach was based on MCMC

samples corresponding to the optimal clustering as outlined in Section 2.3, while it was based

on all MCMC samples for the other Bayesian approaches.

To compute the area under the curve (AUC) for variable selection under our approach

and BLASSO, we looked at a series of regression models obtained by including all covariates

for which β̂kl/std(β̂kl) > tkl, and excluding remaining variables. Here tkl is a threshold which

controls the sparsity of the regression model, and β̂kl, std(β̂kl) are the estimated mean and

standard errors for βkl, k = 1, . . . , q, l = 1, . . . , p. For SSUR, the area under the curve was

computed by looking at a series of regression models obtained by varying the threshold for

the posterior inclusion probabilities. On the other hand, we computed the AUC for graphical

model estimation under the spHIW, and SSUR by looking at a series of graphs obtained by

varying the threshold for posterior inclusion probabilities for edges. Again, only the MCMC

samples corresponding to the optimal clustering was used to compute the graph under our

approach. The AUC for graph estimation under GLASSO was obtained by looking at a

series of models corresponding to different values of the penalty parameter.

3.3 Results

The numerical results under all approaches are reported in Table 2. We observe that for
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Cases I and II, the error for estimating the true regression coefficients under our approach

was lower compared to BLASSO under Case I, but slightly higher under Case II; while it

was lower compared to SSUR for all scenarios. The area under the ROC curve for variable

selection is the highest under BLASSO, while it is close to 0.5 for SSUR. The poor area

under SSUR is due to the inclusion of almost all covariates in the model, which indicates

the inability of the approach to differentiate between important and unimportant covariates.

The lower area under the curve for variable selection under the proposed approach compared

to BLASSO is likely due to the presence of a sizable number of additional covariance param-

eters in the model. Although the proposed method has a lower area under the curve, it has

does significantly better in terms of out of sample prediction compared to all approaches.

This points to the advantage of incorporating the graph structure for predicting test sample

observations, compared to BLASSO which assumes independence within the outcome mea-

surements. SSUR has the largest out of sample MSE which is likely due to the inclusion of

almost all covariates in the regression model.

For graphical model estimation, we note the the proposed approach, SSUR, and GLASSO

all have a similar area under the curve. However the error for estimating the precision matrix

is the lowest under the proposed approach, which points to a superior ability to accurately

estimate partial correlations. We conjecture that a lower error in estimating the partial

correlations is due to the removal of external sources of variation, which when unaccounted

for, can potentially lead to erroneous estimates for strength of associations.

In summary, we conclude that under Cases I and II, the proposed conditional graphical

model has superior out of sample prediction performance by incorporating the underlying

graph structure, but suffers from a poorer variable selection performance due to the presence
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of a sizable number of additional covariance parameters. In contrast, the competing SSUR

approach does very poorly in terms of variable selection and out of sample prediction. Both

SSUR, which includes almost all covariates in the regression model, and GLASSO, which does

not include any covariate at all, have comparable graph estimation performance, but higher

errors when estimating the strength of associations. This underlines the role of accurate

variable selection as an important factor in the estimation of conditional associations.

Under Case III where the data resembles a real world application, the proposed approach

has superior performance compared to all approaches. In particular, the method has compa-

rable out of sample prediction, but a lower error for estimating true regression coefficients,

and a significantly higher area under the curve for variable selection. The higher area under

the curve compared to Cases I and II, points to the increased ability of the proposed method

to differentiate between important and unimportant variables when the dimension of the

multivariate outcome is moderate compared to the sample size, even when the number of

candidate predictors is large. We also observe that the proposed approach has an improved

graphical model estimation performance relative to competing approaches, as evident from

significantly higher area under the curve, and a significantly lower error for estimating partial

correlations.

4. Application to Imaging Genetics

4.1 Description of ADNI Data

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) collected a large amount of imag-

ing, genetic and clinical data. The goal of the ADNI study is to determine whether different

imaging biomarkers, along with genetic variants and clinical markers are strongly associ-

17



ated with the Alzheimer’s disease (AD) and the progression of mild cognitive impairment

(MCI). In this article, we primarily concentrate on identifying (i) important connections

in the functional brain network after accounting for age, gender, handedness, weight, and

genes; (ii) functional modules or collections of ROIs in the brain which work together to drive

brain functions, and the corresponding sub-networks; and (iii) important genes influencing

the imaging phenotype and the functional modules. The brain network is computed using

PET measurements, however it is straightforward to apply the method to other imaging

modalities such as MRI. We perform the analysis separately for the MCI, AD groups, and

healthy controls (HC), and compare results across the three groups. We begin with a data

description.

Imaging data: ADNI 1 collected the longitudinal PET scans at multiple time points across

different imaging sites. To study the association between the imaging biomarkers and genetic

variants, we used the PET scans at baseline for 49 AD patients, 121 MCI patients and 71

healthy subjects. The standard pre-processing steps including co-registration, normalization

and spatial smoothing (8 mm FWHM) were applied to the PET dataset. We considered 90

brain regions that are defined according to the automated anatomical labeling (AAL) system.

We computed the PET regional summaries using the first principal component scores over

all voxels with each region, in a similar fashion as in Bowman et. al (2012). This 90 × 1

dimensional summary vector of PET scans is our outcome variable.

Genetics data: The SNPs in the ADNI study were genotyped using the Human 610-Quad

BeadChip (Illumina, Inc., San Diego, CA, USA). By following Zhu et al (2014) and Wang

et al (2012), we only focused on SNPs that belong to the top 40 candidate genes reported in

the AlzGene database (www.alzgene.org) as of June 10, 2010. Before the data analysis, we
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performed standard pre-processing steps (see Wang et. al 2012) on the SNP data for quality

control. We also removed the SNPs having (a) more than 1% missing values; (b) minor allele

frequency less than 5% and (c) the Hardy-Weinberg Equilibrium p-value less than 10−6. The

final dataset includes 614 SNPs on 37 genes. Figure 1 shows the number of the SNPs in the

analysis per gene. The total number of covariates is 618 including pre-selected 614 SNPs

and four demographic variables including handedness, age, gender and weight.

4.2 Analysis Results

Brain Network Identification: Based on the MCMC samples, we computed the posterior edge

inclusion probabilities of the brain network for each group. By thresholding the probability

at 0.5, the group-specific brain networks are obtained in Figure 2. Specifically, the AD,

MCI and HC networks have 79, 102 and 73 important edges, respectively. There are 14

edges shared by all the three groups. Some of the common edges are in the default mode

network (Buckner et al, 2008). For example, the functional connections between left and right

Precuneus (related to self-consciousness) appear in all the three networks, which implies that

AD or MCI subjects have similar functional activities between the two Precuneus regions

as the HC subjects. Also, all the three networks contain edges between the left and right

Hippocampus, which indicates that the two regions are still functionally connected in the

AD and MCI groups, although the damage in the Hippocampus has been confirmed to be

related to AD.

As one of the defining features of the proposed method, it can identify functional modules

or communities for each group specific network. In our analysis, there are three, three and

two functional modules identified in the AD, MCI and HC groups, respectively, which are
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shown in Figure 3. It can be seen that AD and MCI have two similar functional modules:

communities 1 and 2, while the modules related to HC are quite different from the AD and

MCI groups. Functional module 1 for AD and MCI groups collect many regions in parietal

and temporal lobes, with the number of connections being 29 and 42 respectively. We observe

that some functional connections between the two hemisphere are missing in the AD group

compared to the MCI group. For example, the AD network does not have the functional

connections between the right and left fusiform gyrus, the functionality of which is mainly

related to face and body recognition (McCarthy et.al. 1997).

The functional module 2 in both AD and MCI networks include Hippocampus (HIP) and

ParaHippocampal (PHG) in temporal lobe. The total number of connections between these

two regions and all other regions are six in the MCI network and only two in the AD network.

This implies that these regions become more isolated in AD group compared to the MCI

group, which has been confirmed by previous findings (Supekar et al., 2008; Huang et al.

2010). The functional module 3 for the AD group mainly includes four regions: Postcentral

gyrus (PoCG), Precentral gyrus (PreCG), Paracentral lobule (PCL) and Supplementary

motor area (SMA), whose functions are mainly related to the motor skill and sense of touch.

Since this is a separate module in the AD group, these regions have much fewer connections

compared to the HC group which potentially implies reduced motor skills and sense of touch

for AD subjects. Compared to the brain networks for AD and MCI groups, our analysis only

detects two functional modules for the HC, which implies increased connectivity compared

to the AD and MCI patients.

Important Genes for Brain Networks: Based on the MCMC samples, we identify important

SNPs associated with each functional module for AD, MCI, and HC groups (Table 3). For
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example, SNP “rs2018334” on NEDD9 is significantly associated with the sub-network com-

munity 2 in the AD group, which is supported by the findings in Wang et.al. (2012). GAB2

was also recognized as an important gene for both AD and MCI groups, but not the HC

group; this corresponds to prior evidence implying that the gene modifies late onset AD

risk in APOE ε4 carriers and influences Alzheimer’s neuropathology (Reiman et al., 2007).

Keeping in line with prior findings, CH25H was found to be significantly associated with AD

risk but not MCI or HC (Wollmer, 2010). Further, genes which promote MCI disease risk

but are not associated with HC individuals include ECE1 which is associated with cognitive

ability in elderly individuals and disease risk (Hamilton et. al, 2012), as well as ADAM-10

which regulate neuronal plasticity affecting AD (Marcello et. al, 2013), and PICALM, which

was one of the first AD loci identified by GWAS, and which has also been validated in inde-

pendent samples. In addition, SORL1 which is known to be a potential tool for identifying

MCI subjects at high risk of conversion to AD (Piscopo et. al, 2015), is found to be sig-

nificant in the MCI and HC groups, but not with the AD group. In addition to the above

genes, we found that age is a significant predictor for community 1 in the MCI group.

5. Discussion

We have developed a new Bayesian semi-parametric conditional graphical model for imaging

genetics studies, and applied it for analyzing the ADNI dataset. Our approach can jointly

estimate the brain network after accounting for external sources of variation, and infer im-

portant genetic and demographic factors associated with the imaging phenotype and the

brain network. It can also simultaneously discover functional modules in the brain and in-

fer the connectivity within each such module. To our knowledge, the proposed method is
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among the first to jointly address the above aims and is expected to provide deeper insights

in imaging genetic studies, compared to existing approaches.
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Figure 1: Top 37 genes in the analysis and the number of SNPs per gene. There are a total
of 614 SNPs included in the analysis.

AD MCI HC Common

Figure 2: Functional brain network estimation for AD, MCI and HC groups and the common
edges shared by the three networks

Table 1: List of 42 regions of interest for simulation Case III.
Frontal lobe Parietal lobe Occipital lobe Temporal lobe
Frontal Sup L Parietal Sup L Occipital Sup L Temporal Sup L
Frontal Sup R Parietal Sup R Occipital Sup R Temporal Sup R
Frontal Mid L Parietal Inf L Occipital Mid L Temporal Pole Sup L
Frontal Mid R Parietal Inf R Occipital Mid R Temporal Pole Sup R
Frontal Sup Medial L Precuneus L O ccipital Inf L Temporal Mid L
Frontal Sup Medial R Precuneus R Occipital Inf R Temporal Mid R
Frontal Mid Orb L Cingulum Post L Temporal Pole Mid L
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Figure 3: Functional modules or communities for AD, MCI and HC groups, along with
important genes. The arrows relate the sub-networks to the significant genes influencing
them. Each such gene can influence one or more connections in the functional modules, as
well as one or more phenotypes in that module.
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Table 2: Numerical comparison for different approaches under all Cases. MSE stands for out
of sample mean squared error; ||β̂||2L2

implies squared L2 error in estimating the regression
coefficients; AUC(graph) and AUC(var) denote area under the curve for graphical model
estimation and variable selection respectively; and ||Ω̂||L1 denotes error for estimating the
precision matrix.

Case (n,p,q) Method MSE ||β̂||2L2
AUC(graph) AUC(var) ||Ω̂||L1

I spHIW 0.27 0.05 0.80 0.82 0.0138
(100,80,100) BLASSO 0.55 0.07 NA 0.98 NA

SSUR 0.62 0.12 0.78 0.50 0.0389
GLASSO NA NA 0.79 NA 0.0447

I spHIW 0.28 0.05 0.79 0.80 0.0141
(100,80,200) BLASSO 0.56 0.09 NA 0.96 NA

SSUR 0.60 0.10 0.76 0.52 0.0917
GLASSO NA NA 0.78 NA 0.0401

II spHIW 0.26 0.10 0.80 0.85 0.0112
(100,80,100) BLASSO 0.54 0.08 NA 0.96 NA

SSUR 0.61 0.13 0.77 0.50 0.0271
GLASSO NA NA 0.79 NA 0.0432

II spHIW 0.28 0.10 0.79 0.92 0.0127
(100,80,200) BLASSO 0.57 0.08 NA 0.97 NA

SSUR 0.65 0.11 0.78 0.52 0.12
GLASSO NA NA 0.80 NA 0.0391

III spHIW 0.01 0.0015 0.88 0.94 0.17
(121,42,546) BLASSO 0.02 0.0028 NA 0.51 NA

SSUR 0.02 0.0031 0.87 0.78 0.97
GLASSO NA NA 0.89 NA 0.56

28



Table 3: Important SNPs (genes) that are significantly associated with the sub-network
communities for each group

AD MCI HC

Community 1 rs4933497 (CH25H)

rs11590928 (ECE1),
rs3026886 (ECE1),
rs1015477 (DAPK1),
rs10868609 (DAPK1),
rs1105384 (DAPK1),
rs10509825 (SORCS1),
rs10501608 (PICALM),
rs1790213 (SORL1),
rs12594742 (ADAM10),
rs4309 (ACE)

rs4428180 (TF),
rs7748486 (NEDD9),
rs661319 (SORCS1),
rs4713432 (NEDD9),
rs10868644 (DAPK1),
rs11601559 (SORL1)

Community 2
rs2018334 (NEDD9),
rs11603112 (GAB2)

rs3026868 (ECE1),
rs3026886 (ECE1),
rs871495 (DAPK1),
rs12248564 (SORCS1),
rs821962 (SORCS1),
rs1015477 (DAPK1)

rs16871157 (NEDD9),
rs6691117 (CR1),
rs729211 (CALHM1),
rs7036781 (DAPK1)

Community 3 rs212518 (ECE1)

rs1015477 (DAPK1),
rs1415020 (SORCS1),
rs821962 (SORCS1),
rs2450135 (GAB2),
rs7941639 (GAB2),
rs3026886 (ECE1)
rs10509825 (SORCS1),
rs34634755 (GAB2),
rs666682 (PICALM)
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