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Abstract

Genome-wide association studies (GWAS) have successfully identified several risk loci for Alzheimer’s disease (AD).
Nonetheless, these loci do not explain the entire susceptibility of the disease, suggesting that other genetic contributions
remain to be identified. Here, we performed a meta-analysis combining data of 4,569 individuals (2,540 cases and 2,029
healthy controls) derived from three publicly available GWAS in AD and replicated a broad genomic region (.248,000 bp)
associated with the disease near the APOE/TOMM40 locus in chromosome 19. To detect minor effect size contributions that
could help to explain the remaining genetic risk, we conducted network-based pathway analyses either by extracting gene-
wise p-values (GW), defined as the single strongest association signal within a gene, or calculated a more stringent gene-
based association p-value using the extended Simes (GATES) procedure. Comparison of these strategies revealed that
ontological sub-networks (SNs) involved in glutamate signaling were significantly overrepresented in AD (p,2.7610211, p,
1.9610211; GW and GATES, respectively). Notably, glutamate signaling SNs were also found to be significantly
overrepresented (p,5.161028) in the Alzheimer’s disease Neuroimaging Initiative (ADNI) study, which was used as a
targeted replication sample. Interestingly, components of the glutamate signaling SNs are coordinately expressed in
disease-related tissues, which are tightly related to known pathological hallmarks of AD. Our findings suggest that genetic
variation within glutamate signaling contributes to the remaining genetic risk of AD and support the notion that functional
biological networks should be targeted in future therapies aimed to prevent or treat this devastating neurological disorder.
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Introduction

Alzheimer’s disease (AD [MIM 104300]) is the most common

neurodegenerative disorder in the human population [1]. Clini-

cally, AD is characterized by a progressive loss of cognitive abilities

and memory impairment. At a biological level, it is thought that

the presence of extracellular deposits of the b-amyloid peptide (Ab)

and intracellular neurofibrillary tangles composed of hyperpho-

sphorylated Tau protein leads to synaptic loss and neuronal death

[1,2]. Genetically, AD is complex and heterogeneous.[3,4] A small

percentage of AD cases (1–2% of all cases) have an early-onset

familial form of presentation, with symptoms appearing before 65

years of age, and most cases are late-onset or ‘‘sporadic’’ with no

apparent familial recurrence of the disease [4]. While familial-AD

has been associated with mutations in the genes coding for the

amyloid precursor protein (APP) and the presenilins (PSEN1 and

PSEN2) proteins, the only genetic factor extensively replicated for

sporadic AD is the apolipoprotein E-e4 (APOE-e4) allele [4–6],

which is present in ca. 60% of the cases [1,7–9]. However, the

APOE-e4 allele is not causative, since it has been found in

individuals that would not develop the disease, suggesting that

other genetic contributions remain to be identified.

During the past decade, the scientific efforts focused in

identifying these genetic hallmarks reported more than 2,900

Single Nucleotide Polymorphisms (SNP) within , 4,700 genes

associated with AD [10] (see also AlzGene.org). More recently, the

use of high density DNA genotyping microarrays in genome-wide

associations studies (GWAS), combined with powerful statistical

procedures, have expanded the search for novel susceptibility loci

for the disease [11]. Nevertheless, these genetic approaches
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currently exhibit some limitations. First, they present a high rate of

false positives and require major sample sizes in order to be

replicated. In fact, different simulations have shown that authentic

associations have only a 26% chance of falling into the top 1,000

p-values in a GWAS [12]. Second, they only examine the

association of a single genetic variant at a time, therefore failing in

the detection of minor associations that can still be present and

confer risk in a cumulative way. Finally, current top hits associated

with AD, including the bridging integrator 1 (BIN1) [13], clusterin

(CLU) [14,15], the ATP-binding cassette sub-family A member 7

(ABCA7) [16], the complement component (3b/4b) receptor 1

(CR1) [15], and the phosphatidylinositol binding clathrin assembly

protein (PICALM) [14], do not account for the entire genetic

contribution of the disease or surpass the risk conferred solely by

the APOE-e4 allele.

Therefore, considering that the etiology of complex diseases

might depend on functional protein-protein interaction networks

[17,18], here we performed a meta-analysis followed by network-

based pathway analyses on publicly available GWAS in AD and

used significant genetic information to identify glutamate signaling

as a key ontological pathway of the disease.

Subjects and Methods

GWAS datasets included in the analysis
We selected three publicly available GWAS in AD performed

on unrelated case-control and familial samples from European-

descent populations (Table 1). The GWAS datasets are: i) the

Translational Genomics Research Institute (TGen1) study on AD

[19], including 829 AD cases and 535 control individuals; ii) the

National Institute on Aging - Late Onset Alzheimer’s Disease and

the National Cell Repository for Alzheimer’s Disease (NIA-

LOAD/NCRAD) [20,21], including 5,220 subjects from which we

only considered for analysis a subset of 3,689 individuals (1,837

cases and 1,852 controls) that were self-declared non-Hispanic

European Americans, passed principal components analyses and

had non-missing phenotypes. Given that this subset is composed

by familial data, using the provided family trees, we excluded all

related controls and kept only one case per family giving a final

number of 978 AD cases and 702 controls individuals that were

eligible for our study; and iii) the Pfizer Pharmaceutical Company

(Pfizer) study on AD [13], including 733 AD cases and 792 control

individuals, available only at summary level. The TGen1 data was

downloaded from the TGen website (https://www.tgen.org/

research/research-divisions/neurogenomics.aspx) and the NIA-

LOAD/NCRAD data was retrieved through the database of

Genotypes and Phenotypes (dbGaP; http://www.ncbi.nlm.nih.

gov/gap) [22] of the National Institute of Health (NIH), under the

accession number phs000168.v1.p1. The Pfizer data was gathered

from the supplementary information accompanying the original

publication [13]. Detailed information regarding recruitment,

diagnosis, affection status and age at the time of enrollment can be

found in the original studies [13,19,21]. Written informed consent

was obtained for all participants and prior Institutional Review

Board approval was obtained at each participating institution.

Additionally, data used in the preparation of this article were

obtained from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database (http://adni.loni.usc.edu) as a targeted replica-

tion sample. The ADNI was launched in 2003 by the National

Institute on Aging (NIA), the National Institute of Biomedical

Imaging and Bioengineering (NIBIB), the Food and Drug

Administration (FDA), private pharmaceutical companies and

non-profit organizations, as a $60 million, 5-year public-private

partnership. The primary goal of ADNI has been to test whether

serial magnetic resonance imaging (MRI), positron emission

tomography (PET), other biological markers, and clinical and

neuropsychological assessment can be combined to measure the

progression of mild cognitive impairment (MCI) and early

Alzheimer’s disease (AD). Determination of sensitive and specific

markers of very early AD progression is intended to aid

researchers and clinicians to develop new treatments and monitor

their effectiveness, as well as lessen the time and cost of clinical

trials. The Principal Investigator of this initiative is Michael W.

Weiner, MD, VA Medical Center and University of California –

San Francisco. ADNI is the result of efforts of many co-

investigators from a broad range of academic institutions and

private corporations, and subjects have been recruited from over

50 sites across the U.S. and Canada. The initial goal of ADNI was

to recruit 800 subjects but ADNI has been followed by ADNI-GO

and ADNI-2. To date these three protocols have recruited over

1500 adults, ages 55 to 90, to participate in the research, consisting

of cognitively normal older individuals, people with early or late

MCI, and people with early AD. The follow up duration of each

group is specified in the protocols for ADNI-1, ADNI-2 and

ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-

GO had the option to be followed in ADNI-2. After QC

procedures (See below; Association analysis) the final ADNI

sample consisted in a total of 693 individuals, 449 cases (161 AD

and 338 MCI Cases) and 194 unrelated controls. A total of

524,993 SNPs were genotyped under the Illumina 610 Quad

platform (Table 1).

Imputation
In order to maximize information on linkage disequilibrium

(LD) structure between the studies, the TGen1 and the NIA-

LOAD/NCRAD datasets were imputed by comparison with the

CEU reference panel (unrelated individuals) from the HapMap III

phased data (release 2) [23]. Imputation was carried out using the

Markov Chain Haplotyping method implemented in MACH 1.0

following author recommendations [24].

Association analysis
Quality control (QC) procedures such as minor allele frequency

(MAF), Hardy-Weinberg equilibrium (HWE), missing rate per

individuals (MIND) and per SNPs (GENO) were performed on the

TGen1 and the NIA-LOAD/NCRAD dataset using PLINK

v.1.07 (http://pngu.mgh.harvard.edu/purcell/plink/) [25] with

threshold values of 0.05, 161026, 0.05 and 0.02, respectively. We

applied a logistic regression analysis, using an additive model on

the imputed datasets data with MACH2DAT [24]. SNPs with r2

values less than 0.29 were removed from further analysis.

Similarly, in the Pfizer dataset, the standard error (SE) per SNP

was estimated from the p-values reported in the study [13]. Briefly,

p-values were transformed into the corresponding Z score with the

INVNORMAL function implemented in STATA v.10 (Stata-

Corp, College Station, TX), and then the SE was calculated taking

the log of the odds ratios (OR) divided by the corresponding Z

score. In the ADNI replication dataset, we performed QC and

association analysis based on a quantitative trait locus (QTL)

method as described previously [26]. MAF, HWE, MIND and

GENO QC values of 0.05, 161026, 0.1 and 0.1 were applied,

respectively. In order to control for population stratification we

conducted Principal Component Analysis (PCA) with EIGEN-

STRAT [27]. After this step, 63 individuals were excluded from

further analysis, leaving a total 693 individuals. The QTL

association analysis was carried out using an additive genetic

linear regression model with PLINK using different co-variables

including age at baseline visit, education, gender and APOE status
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(e4 allele present or not). Finally, the results for each dataset was

assessed for genomic inflation and visualized in Quantile-Quantile

(Q-Q) plots using the statistical R (www.r-project.org) [28].

Meta-analysis
Meta-analysis was performed using the inverse variance method

implemented in PLINK v.1.07 [25]. We checked that all statistics

values (p-values, OR and SE) for each dataset prior the meta-

analysis were computed for the same allele. Annotation of the

results was done with the RefSeq Genes for the human genome

assembly Build 36.3/Hg18 available at the UCSC Table Browser

[29] using own Perl scripts (available upon request). In order to

consider a SNP inside a gene we defined a threshold of +/2 5,000

bp relative to the transcription start and end sites. The annotated

output of the meta-analysis used for the pathway approach is

available in Table S1. PRISMA guidelines were followed (showed

in Checklist S1) [30].

Single-gene p-value generation
Genetic association values with a cut-off threshold of p,0.05,

from either the Meta-analysis or the ADNI replication dataset,

were transformed into single-gene associations using two indepen-

dent approaches: i) Selection of a gene-wise p-value (GW) [17],

defined as the single strongest association inside a gene; and ii)

Calculation of a gene-based association p-value using the extended

Simes procedure (GATES), which extract a gene-level association

from the combination of the SNPs p-values within a gene. This

approach does not relies on genotype or phenotypic data and has

been shown to correct type 1 error rates in both simulated and

permuted datasets, regardless of the gene size or LD structure [31].

GATES is an open-source tool named Knowledge-Based Mining

System for Genome-wide Genetic Studies (KGG; http://http://

bioinfo1.hku.hk:13080/kggweb/).

Functional Protein Association Network (FPAN)
To evaluate single-gene associations in a network context the

complete human functional protein association network (FPAN)

was retrieved from the STRING 9.0 database (Search Tool for the

Retrieval of Interacting Genes/Proteins; http://string-db.org/)

[32]. FPAN contains highly curated known and predicted

interactions emerging from different evidence channels such as:

genomic context, co-expression and curated literature. Raw text-

formatted protein-protein functional interactions were download-

ed from STRING. To avoid redundancy and false positives,

alternative proteins and their interactions were consolidated into

one gene using own Perl scripts (available upon request). We kept

only the interactions with a combined score .0.7 (provided by

STRING), which stand for high confidence interactions. The final

FPAN generated was composed by 14,793 nodes (genes) and

229,357 edges (interactions) and was introduced as an input to

Cytoscape [33], which is an open source platform for visualizing

complex networks that not only allows the integration of additional

attribute data (i.e. gene annotations, expression profiles and

interactions source and confidence), but also provides a compre-

hensive set of tools to perform integrated pathways analysis. Thus,

the p-values of GW and GATES procedures were introduced as a

floating-point attribute into the FPAN (Table S2).

Sub-networks search (SNs)
SNs search was carried out with the Cytoscape JActive Modules

Plug-in [34] with a gene overlap threshold of 50%. JActive

modules is designed to detect if a certain group of connected nodes

are significantly enriched with a statistical parameter such as the

single gene p-value, which in our study comes from either the

meta-analysis or the ADNI replication dataset. Briefly, starting

from one node a sub-network grows to its connected genes by

computing an aggregated score (S) derived from the conversion of

the single-gene p-value (if present) into their corresponding z-score

(with the inverse normal cumulative distribution function). This

score is compared internally with a background distribution

created from the scores of 10,000 random modules of the same

size in a Monte Carlo procedure. If the aggregated score cease

growing above the expected by chance, the algorithm stops and

the growing sub-network is reported as a result. As in the original

publication, modules with S.3 (3 standard deviation above the

mean of randomized scores) and with a size below 50 were

considered significant [17]. To acquire a mean S score and

standard deviation (SD) for each resulting SN and to confirm that

the SN structure (gene members and interactions) and significance

remained consistent and replicable, the search was performed 10

times for each analysis (Meta-GW, Meta-GATES, ADNI-GW and

ADNI-GATES). Finally, the same procedure was conducted with

their corresponding permuted p-values over the entire genes

present in the FPAN (Permuted analysis) and without genome

wide significant results (p-values ,1028), in this case with real and

permuted data, respectively (WGW analysis). Statistical differences

between permuted and non-permuted analyses were assessed

through two-sided t-test.

Gene Ontology (GO) and KEGG pathway enrichment
Analysis

To examine if the structure of significant sub-networks obtained

in the Meta or the ADNI replication dataset were biologically

meaningful, gene lists of the first 10 significant modules were tested

for pathway enrichment using information from Gene Ontology

(GO; http://geneontology.org/) [35] and the Kyoto Encyclopedia

of Genes and Genomes database (KEGG; http://www.genome.

jp/kegg/) [36]. We initially used the ontology structure and

Table 1. Genome-Wide Association Studies main features.

Datasets Samples Ethnicity Cases Controls Platform SNPs

TGen1 1,364 Caucasian 829 535 Affymetrix 500 K
GeneChip

1,231,704a

NIA-LOAD/NCRAD 1,680 Caucasian 978 702 Illumina 610-Quad 1,245,964a

Pfizer 1,525 Caucasian 733 792 Illumina 550 K, 610-Quad 439,113

Total Meta-analysis 4,569 Caucasian 2540 2029 - 1,216,213b

ADNI (replication) 693 Caucasian 499c 194 Illumina 610-Quad 524,993

aImputed. bSNPs shared between the 3 studies. cAD + mild cognitive impairment (MCI) individuals.
doi:10.1371/journal.pone.0095413.t001
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annotations using the package Ontologizer [37], only considering

categories with less than 500 members to avoid associations to

major categories that are less informative (i.e. signaling) and

excluding the ones "Inferred by Electronic Annotation" (IEA),

from "Reviewed Computational Analysis" (RCA) and with "No

biological Data available" (ND), which are characterized by a high

rate of false positives [38]. In this case, we used the parent-child-

union algorithm to call for overrepresentation adjusting the p-

values with a Westfall-Young Single-Step multiple test correction,

to avoid additional false positives [39], and considering a GO term

significantly over-represented when the adjusted p-value was

below 0.01. Similarly, to determine overrepresentation, KEGG

pathway enrichment was assessed in the complete set of pathways

and components [40], using an hypergeometric test with the

phyper function contained in the R statistical package [41].

Gene expression heatmaps and cluster analysis
To evaluate the expression pattern of genes of interest from the

network-based analysis, human gene expression profiles were

downloaded from the Allen Brain Atlas (ABA) website (http://

www.brain-map.org) [42]. We used the Gene Search web-tool to

enter a list of genes arising from the intersection of sub-networks

and analyzed their expression profiles through 27 brain regions.

We averaged the expression levels from 6 brain donor individuals

(ids. H0351.2001, H0351.2002, H0351.1009, H0351.1012,

H0351.1015 and H0351.1016) and used the collapseRows R

script [43] to generate a gene-wise expression dataset. Expression

heatmaps and hierarchical clusters were analyzed using Cluster

v.3.0 (http://www.geo.vu.nl/,huik/cluster.htm) and visualized

with the aid of JavaTreeView v.1.1.6r2 (http://jtreeview.

sourceforge.net) [44]. Identification of genes co-expressed and

correlation analyses were performed with Cluster v.3.0, using

Euclidean distance in conjunction with centroid linkage algo-

rithms, and a correlation coefficient cutoff of r.0.7 to denote

highly correlated gene clusters.

Results

Meta-Analysis
The complete strategy implemented in the present study is

shown in Figure 1. General features of the datasets used for the

meta-analysis (TGen1, NIA-LOAD/NCRAD and Pfizer) and for

the targeted replication sample (ADNI) are described in Table 1.

The genetic information of 4,569 individuals (2,540 AD cases and

2,029 controls) was considered after passing QC thresholds based

on MAF, HWE, MIND and GENO parameters calculated in

PLINK. Additionally, we imputed a total of 1,231,704 and

1,245,964 QC-passing SNPs for the TGen1 and NIA-LOAD/

NCRAD datasets, respectively. To account for bias still present

after QC procedures, SNP association p-values were further

assessed for genomic inflation, which is represented in Q-Q plots

(Figure S1). All the datasets yielded an inflation factor (l) between

the acknowledged margins of 0.9 to 1.1, where the contribution of

population structure to the genome-wide association is negligible

[45]. Taking into account these considerations, we performed a

meta-analysis using the inverse variance method, selecting p-values

and ORs from the fixed effects model, assuming that these studies

have been conducted under similar conditions and subjects [46–

48]. The combined analysis showed a normal distribution of the p-

values with an excess of significant signals seen only at the end of

the curve, indicating likely true association events (l= 1.05, Figure

S1).

Whole-genome meta-analysis results are depicted as a Manhattan

plot (Figure 2), with a significance threshold defined above log10

(561028), which marks the beginning of genome-wide significant

values [49]. In agreement with current reports, the strongest

associations were located in a broad genomic region (.250,000 bp)

in the vicinity of the APOE locus in chromosome 19 (Table 2). In

particular, highly significant genome-wide associations signals were

observed in the coding region of the translocase of the mitochondrial

outer membrane gene (TOMM40: rs2075650, p = 8.546102116,

OR = 4.48; rs157580, p = 9.6610235, OR = 0.51 and rs8106922,

p = 1.17610225, OR = 0.57), upstream of the apolipoprotein C-I

gene (APOC1: rs439401, p = 8.82610229, OR = 0.54), inside the

poliovirus receptor related 2 isoform delta gene (PVRL2: rs6859,

Figure 1. Study strategy. Genotype imputation was carried out in
the Tgen1 and NIA-LOAD/NCRAD datasets (asterisk). The meta-analysis
was conducted using the inverse variance method in PLINK, after
pruning bad genotypes and samples using standard quality control
(QC) tests. The ADNI dataset was included for replication following
similar QC procedures at this step. Meta-analysis (dark grey arrows) and
ADNI associations (light grey arrows) results were annotated and single
gene p-values calculated using the Gene-Wise (GW) method or the
more stringent GATES procedure (threshold p,0.05). We next
introduced this information to FPAN (from STRING database). Module
search was performed 10 times, side by side with the permuted data
and without genome-wide-significant (WGW) results, which served as
internal controls. Significant sub-networks (white squares) were
compared and assayed for gene ontology (GO) term and KEGG
pathways enrichment to obtain the final overrepresented pathways
associated with AD, inside each sub-network. Equal results between
Meta and WGW analysis (‘‘ = ’’) that could not be obtained with the
permuted control (‘‘?’’) were expected.
doi:10.1371/journal.pone.0095413.g001
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p = 7.87610228, OR = 1.7 and rs3852861 p = 5.32610211,

OR = 0.64) and between TOMM40 and the APOE gene

(rs405509, p = 2.29610227, OR = 0.57). In addition, in the same

chromosomal region we observed genome-wide association, down-

stream of the basal cell adhesion molecule isoform 1 gene (BCAM:

rs10402271, p = 1.98610217, OR = 1.46 and rs10405693,

p = 2.83610212, OR = 1.49) and in the region of the B-cell CLL/

lymphoma 3 gene (BCL3: rs8103315, p = 1.8761028, OR = 1.5).

We note that the strength of the association signal for some SNPs is

derived from the Pfizer and NIA-LOAD/NCRAD datasets only,

since these were either not genotyped in the TGen1 sample or poorly

imputed due to the intrinsic array density in that particular region of

chromosome 19 in the Affimetrix GeneChip 500 K (See "N" column,

Table 2). Interestingly, among the top 25 associations detected, novel

genome-wide marginally significant signals outside chromosome 19

were observed: in chromosome 12 (intergenic: rs249153,

p = 4.38610207, OR = 1.41; intergenic: rs249166 and rs249167,

both with p = 6.91610207 and OR = 1.40) and in chromosome 5

(intergenic: rs13178362, p = 6.60610207, OR = 0.75), followed by

trends inside the membrane-spanning 4-domains, subfamily A,

member 3 gene in chromosome 11 (MS4A3: rs474951,

p = 1.2561026, OR = 0.79 and rs528823, p = 1.5561026,

OR = 0.79) and also within the Fanconi anemia group D2 gene in

chromosome 3 (FANCD2: rs1552244, p = 1.63610206, OR = 0.76;

rs9849434, p = 1.88610206, OR = 0.71).

Pathway Analysis
To test the hypothesis that highly-connected sub-networks (SNs)

enriched with minor associations might be significantly overrep-

resented in AD, we performed a gene-oriented pathway analysis

by loading meta-analysis results into a high confidence functional

protein association network (FPAN), gathered from the STRING

database [32]. First, to avoid noise, the analysis was restricted to

SNPs with p-value ,0.05 (Table S1). Second, we calculated

whole-gene association values using two alternative approaches: (i)

the extraction of a gene-wise p-value, corresponding to the

strongest association signal within a gene (Meta-GW) [17]; and (ii)

the derivation of a more stringent gene-based p-value using the

extended Simes test (Meta-GATES), which combines all associ-

ation signals within a gene and controls for the bias that could be

generated by gene-size or LD structure among markers [31].

Thus, we observed 66,204 SNP association p-values ,0.05 tagging

7,527 genes. Of these, we loaded only 4,891 and 4,647 gene p-

values (from GW and GATES procedures, respectively) into

FPAN (Table S2), which was composed by 14,793 genes having

229,357 non-redundant high-confidence interactions (note that

not all genes are informative in the FPAN). Third, we conducted

the search for significant SNs in AD using the information from

GW and GATES procedures in comparison with an expected

background distribution among the FPAN created from 10,000

permutations (See Methods). Fourth, we repeated the search 10

times in order to explore whether the SNs structure (gene

members), interactions and significance was consistent across

iterations and not the result of the Monte Carlo procedure. As an

example, we observed that the top SN1 had a 97.6% of

concordance in gene structure and interactions (see also Table

S3). Fifth, the above results were controlled by 2 further module

searches, this time including permuted data or results without

genome wide (WGW) significance (Figure 1). While in the former

search, the p-values were permuted 10 times over the entire FPAN

to determine if the SN structure and its score could be obtained by

chance (Meta-GW-Permuted, Meta-GATES-Permuted); in the

latter, we discarded the possibility that the SNs could be the result

Figure 2. Genome wide meta-analysis results in AD. Manhattan plot showing the p-values obtained in the meta-analysis. The end and
beginning of a chromosome is denoted by the change of color pattern of the SNPs (black, grey and brown dots). Genome-wide significance threshold
is denoted by a red line (5.061028). The Y-axis has been truncated to show all associated SNPs inside the APOE loci and to improve visualization of
suggestive associations.
doi:10.1371/journal.pone.0095413.g002
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of bias due to the strong genome-wide significant p-values within

the APOE locus.

The result of the global search for overrepresented modules in

AD is presented in Figure 3. First, the total number of significant

SNs obtained in the Meta-GW analysis (average number = 32.3,

SD = 6.14) was significantly higher (p = 2.5161027), than those

arising from chance (Figure 3A; Meta-GW Permuted; aver-

age = 13.7, SD = 4.05). Likewise, the total number of significant

SNs in Meta-GATES was similar to Meta-GW (average number

= 34.9, SD = 0.99) and significantly higher (p = 1.3561029) than

those obtained by chance (Figure 3A; Meta-GATES Permuted;

average = 6.1, SD = 7.99). Second, the SN scores in each

procedure were always significantly higher among real vs.

permuted data (Figure 3B). Third, the number and scores of the

modules obtained in the WGW control was similar to the ones

obtained with the whole set of associations, indicating that the

strongest associations of the meta-analysis did not influence the

present observations (Figure 3A and B). Fourth, the modules

obtained in the Meta-GW and Meta-GATES searches, remained

consistent in significance and structure across iterations, changing

Figure 3. SN search results. (A) The number of significant SNs (size ,50 and score.3) in Meta-GW (light green) and Meta-GATES (dark green) is
shown compared with same values permuted across the FPAN: Meta-GW-Permuted (light grey) and Meta-GATES-Permuted (dark grey). (B) Score
comparison of the top 10 SNs obtained in the corresponding module searches presented in (A). (C) The number of significant SNs in the replication
step for ADNI-GW (light blue) and ADNI-GATES (dark blue) analysis, in comparison with their corresponding permuted controls: ADNI-GW-Permuted
(light grey) and ADNI-GW-Permuted (dark grey). (D) Score comparison of the top 10 SNs obtained for each module searches presented in (C). Caped
bar/points denote SD; Significant differences between real and permuted data observed in GW and GATES analysis are denoted by an asterisk and
those between real and permuted data observed only in GW analysis are denoted by a plus sign (two-sided Student’s t-test; p,0.01).
doi:10.1371/journal.pone.0095413.g003
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only in their respective rank/score. Remarkably, the most

significant SN detected in each approach (Meta-GW SN1:

S = 6.14, p-value = 8.1661028; and Meta-GATES SN1: S

= 5.62, p-value = 1.7761025; Figure 3B and Table 3) was

identical in structure differing only in the presence of the guanine

nucleotide binding protein (G protein) alpha z polypeptide gene

(GNAZ), which was absent in Meta-GATES SN1 (Table S4).

Finally, we note that the list of genes contained in each SN was not

replicated in the permutation analyses and that only 2 out of 688

permuted genes were also seen either in Meta-GW SN1 or Meta-

GATES SN1 (Figure S2). Altogether, these results indicate that the

quantity, significance and structure of the modules identified could

not be reached by chance, strongly suggesting that these sub-

networks could be biologically meaningful in the etiology of AD.

Glutamate signaling is overrepresented in AD
To examine the above-mentioned hypothesis, gene ontology

(GO) term enrichment was assessed in the top 10 SNs identified

using the package Ontologizer (see Methods). Table 3 presents the

top 3 Meta-GW and Meta-GATES SNs as a function of biological

process (BP), cellular component (CC) and molecular function

(MF) categories. Meta-GW results indicated that: SN1 was heavily

composed by genes acting at the synapse (21/461,

p = 2.87610218), participating in the glutamate receptor signaling

pathway (11/46, 2.67610211) and specifically related to glutamate

receptor activity (13/24, p = 1.21610218); SN2 was mostly over-

represented by genes belonging to the axon guidance biological

process (33/341, p = 1.2061029), located mostly at the cell leading

edge (12/245, p = 9.35610211); and SN3 was over-represented by

the roundabout signaling pathway (3/3, p = 1.661027). On the

other hand, the results with the alternative and more stringent

Meta-GATES procedure showed that SN1 had identical ontolog-

ical enrichment patterns as observed for Meta-GW SN1, being

glutamate receptor activity the most significant category (13/24,

1.69610218). Interestingly, Meta-GATES SN2 contained several

genes involved in lipid metabolism including categories such as

steroid metabolic process and lipid localization (11/269,

p = 2.1361029 and 13/221, p = 3.8161029, respectively). Finally,

Meta-GATES SN3 was composed of genes participating in

transmembrane receptor protein kinase activity (12/82,

p = 1.18610212), growth factor binding (9/99, p = 3.42610212),

protein autophosphorylation (16/174, 2.30610212) and located

mainly at the synapse (7/461, 3.2861026). Specific SNs features

and components are described in Table S4. The complete set of

ontologies overrepresented in the first top 10 SNs (SN1-SN10) is

provided in Table S5.

Replication of glutamate signaling in the ADNI dataset
Considering that glutamate signaling pathway components were

consistently present in significant SNs enriched with minor

associations to AD, both in the Meta-GW and Meta-GATES

analyses, and since both procedures were originated from a single

set of SNP associations, we next interrogated the ADNI dataset

under the same pipeline (Figure 1), as an attempt to replicate the

results in an independent sample of AD individuals. This

additional dataset was composed of 693 subjects of which 499

were cases and 194 were controls (Table 1). Genetic association

values were calculated replicating the quantitative trait locus

(QTL) method reported in the original study [26], which is based

on the composite memory score, a measure of the level of memory

impairment, reported for each patient (see Methods). Although,

the ADNI case cohort includes subjects with mild cognitive

impairment (MCI), the phenotype is considered a transitional state

with significant risk of progression to clinically diagnostic AD [50],
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which validates their inclusion. After the corresponding QC

procedures, the ADNI dataset showed no significant genomic

inflation (l= 1.02, Figure S1). According to was described in the

original publication, our results indicate that QTL testing yielded

25,785 SNP associations (p-value ,0.05), tagging 4,915 genes

(Table S6), did not reach genome wide significant levels. Marginal

associations were observed within the dual specificity phosphatase

23 (DUSP23) gene in chromosome 1 (rs1129923, p = 1.0761026),

the 3’-phosphoadenosine 5’-phosphosulfate synthase 1 (PAPSS1)

gene (rs9569, p = 6.8461026) and in the phosphatidylinositol-4-

phosphate 3-kinase, catalytic subunit type 2 gamma (PIK3C2G)

gene (rs10841025, p = 9.0161026), as well as association signals in

intergenic regions on chromosome 17 and 3 (rs9890008,

p = 4.2561026 and rs4857008, p = 5.8861026, respectively).

We introduced 3,244 and 3,113 p-values, ADNI-GW and

ADNI-GATES respectively (Table S2), into the same FPAN used

for the Meta-analysis and module search was carried out with their

respective null datasets (ADNI-GW-Permuted, ADNI-GATES-

Permuted), since in the absence of genome wide significant results,

the WGW control was not necessary. In general agreement with

the meta-analysis data, global results indicated that the number of

significant modules obtained in either ADNI-GW (average

number = 30.3, SD = 2.00) or ADNI-GATES (average number

= 24.4, SD = 1.7), was significantly higher (p = 7.0161023 and

p = 1.8061025, respectively), than those obtained by chance

(Permuted; Figure 3C). Interestingly, when comparing the scores

of the first 10 SNs only the ones belonging to the ADNI-GW

analysis remained significantly above their respective permuted

ones (Figure 3D) and thus were considered for further analysis

(Table S4).

GO term enrichment in ADNI indicated that genes belonging

to categories such as voltage-gated calcium channel complex and

ion channel complex were significantly overrepresented in AD

(p = 1.2461028 and p = 9.2461027, respectively; see also Table

S4 and Table S5 for complete ontological results). Moreover, we

replicated multiple modules enriched with glutamate signaling

genes (Table 4), including modules SN3 (S = 5.23, p = 5.0961028),

SN4 (S = 4.94, p = 7.1461028) and SN7 (S = 4.38, p-value

= 3.4061028). Individual sub-network structure is presented in

Figure S3.

KEGG pathway enrichment
KEGG provided information regarding 280 pathways involving

6,733 genes. Although in comparison with the GO database the

amount of information provided by KEGG is substantially

reduced, the fact that each annotation is manually curated makes

any association much more reliable [51]. Notably, throughout this

analysis we detected that glutamate signaling was again the main

overrepresented biological process in both Meta-GW SN1

(p = 1.10610228) and Meta-GATES SN1 (p = 5.94610229) sub-

networks (Table S7). Glutamatergic synapse, as a KEGG pathway

category, was also significantly associated in ADNI sub-networks

SN3, SN4 and SN7 (p = 1.20610206, p = 1.32610206 and

p = 8.18610210, respectively; Table S7). Finally, logical and

structural relationships of all sub-networks enriched with gluta-

mate signaling genes from the meta-analysis and the ADNI-

replication dataset allowed us to define a list of genes of interest,

which were shared at least by 3 SNs (Figure 4). The list was

composed by 20 signaling components, including membrane-

anchored ionotropic (GRIN2A, GRIN2B, GRID2, GRIA1 and

GRIA2) and metabotropic glutamate receptors (GRM1, GRM3,

GRM7 and GRM8), intracellular downstream effectors CAMK2A

and AKAP5, as well as scaffold proteins SHANK1 and SHANK2,

which are required for proper formation and function of neuronal

synapses [52]. The functional relationship of these signaling

components in the context of a glutamatergic synapse is shown in

Figure 5.

Expression of glutamate-signaling genes in the human
brain

At the physiological level, to explore if there was a transcrip-

tional relationship among the glutamate signaling genes previously

identified, we examined their expression profiles in 27 normal

human brain regions, using the information from the Allen Brain

Atlas [42], as a reference. Clearly, the expression pattern of these

components clustered in brain regions tightly related to AD

Table 4. Glutamate positive sub-networks in ADNI-GW analysis.

SN Type GO ID GO Name GISN GIP TG p-value

SN3 BP GO:0035637 multicellular organismal signaling 19 483 48 5.87E-12

GO:0019226 transmission of nerve impulse 19 467 48 6.22E-10

GO:0007215 glutamate receptor signaling pathway 7 44 48 5.09E-08

CC GO:0044447 axoneme part 6 20 48 9.54E-11

GO:0044463 cell projection part 12 235 48 1.12E-10

GO:0008328 ionotropic glutamate receptor complex 6 21 48 3.24E-08

MF GO:0008066 glutamate receptor activity 5 19 48 1.78E-06

SN4 BP GO:0031280 Neg. regulation of cyclase activity 4 19 22 2.59E-06

GO:0051350 Neg. regulation of lyase activity 4 20 22 3.17E-06

GO:0030809 Neg. regulation of nucleotide biosynthetic process 4 23 22 2.38E-06

MF GO:0008066 glutamate receptor activity 6 19 22 7.14E-08

SN7 BP GO:0007215 glutamate receptor signaling pathway 7 44 40 5.09E-08

CC GO:0008328 ionotropic glutamate receptor complex 4 21 40 2.09E-05

MF GO:0008066 glutamate receptor activity 5 19 40 3.40E-08

SN: Sub-network; GO ID: Gene ontology term ID; GIP: Genes in population; GISN: Genes in sub-network; TG: Total genes in SN; BP: Biological process; CC: Cellular
component; MF: Molecular function.
doi:10.1371/journal.pone.0095413.t004
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pathology, such as the hippocampal formation, hypothalamus and

white matter [53–55] (Figure 6). While it is known that glutamate

signaling is active in these brain domains [56–58], it was

interesting to find out clusters with high- and low-expression

levels. For instance, GRIA1, GRIA2, CAMK2A, GRIN2B and

GRM7 were found among highly expressed gene clusters in the

hippocampal formation (r = 0.94), particularly in the CA2–CA3

and CA4 region (Figure 6A), while GRM3, LPHN3, GRID2 and

SLC9A9 were grouped in a low-expression cluster (r = 0.87). Low-

expression clusters were also observed in the hypothalamus (LSP1,

GRM3, GRM1, GRIN2A, ITPR1, AKAP5 and ATP2B2;

Figure 6B), the dorsal thalamus (SHANK2, SHANK1, BAI3,

PIAS1, GRIA1, GRID2 and GRIA2; Figure 6C) and also

distinguished in the white matter (GRIA2, AKAP5, GRIN2A,

GRIN2B, CAMK2A, SHANK2, GRM8, GRM1, GRM7, BAI3,

LPHN3, ITPR1, SHANK1 and ATP2B2; Figure 6D). Interest-

ingly, there was an inverse relationship in the expression pattern of

a subset of these genes, since components highly expressed in the

hippocampus were found in low-expression clusters in the white

matter, and vice versa (i.e. GRIA2, CAMK2 and GRIN2B vs.

GRM3 and SLC9A9). Altogether these results indicate that

glutamate signaling components are differentially expressed in

restricted brain domains for proper neuronal or glial functional

activity (see also Figure 5).

Discussion

In agreement with previous GWAS in AD [8,13–16,19] our

meta-analysis detected strong genome-wide association signals in a

250 kb window of chromosome 19, centered in the coding/

regulatory region of the TOMM40 gene, in close proximity to the

APOE locus, and that also included significant signals in the

PVRL2, APOC1, BCAM and BCL3 genes. While it has been

suggested that the association of such extended region may reflect

that other variants in LD with APOE may be of pathogenic

importance, particularly a poly-T track in the TOMM40 gene

[59,60], recent studies have shown that APOE alleles account for

essentially all the inherited risk of AD associated in this region

Figure 4. Structure and relationships between glutamate signaling SNs overrepresented in AD. SN gene composition (nodes) and
interactions (edges) are shown for: Meta-SN1 in the upper left corner with green edges (which includes GW and GATES modules, GNAZ* gene only
present in GW); ADNI-GW SN3 in the bottom left corner with dark blue edges; ADNI-GW SN4 in the bottom right corner with blue edges and ADNI-
GW SN7 in the upper right corner with light blue edges. Genes shared by at least 2 SNs are located at the center in bold font and cross interactions
between genes inside each module are denoted by light grey edges. Node color represents the OR behavior in a gradient from green to red values
(i.e. green: OR,1; red OR.1; white: OR = 1), denoting protection and risk, respectively. Similarly, node size is proportional to the –log10 p-value
obtained from the meta-analysis (if absent, node size is the minimum). Triangle shaped nodes marks genes belonging to the glutamate signaling
pathway GO term (GO:0007215); Diamond shaped nodes denotes genes belonging to KEGG Glutamatergic synapse pathway (hsa04724); Squares
Square shaped nodes denotes genes belonging to both gene ontology term GO:0007215 and KEGG hsa04724 pathway.
doi:10.1371/journal.pone.0095413.g004
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[61]. Besides the signal in chromosome 19, we detected marginal

associations of 2 novel SNPs in the MS4A3 gene, located in a wide

LD region containing a cluster of SNPs in the MS4A6A/MS4A4E

loci in the long arm of chromosome 11 (i.e. rs610932, rs670139,

rs1562990, rs4938933 and rs983392), which reached genome-

wide significant levels by other recent studies [16,62,63].

Assuming that the APOE locus is the major genetic hallmark

associated with the disease and that it does not explain the entire

susceptibility of AD [1,7–9], we conducted a network-based

pathway analysis with our meta-analysis results to explore the

biology behind variants with minor effect size. Initially, to

integrate the whole genetic contribution from the meta-analysis

we used a gene-wise p-value (GW, single min p-value method) that

has been widely applied in detecting novel associations using

GWAS data [17,64]. Although this approach has a certain bias for

pathways enriched with larger genes and does not consider

intergenic associations or LD structure, we note that the random

permutation of p-values yielded a distribution of results expected

by chance from where the actual data could be compared.

Likewise, with the search for significant sub-networks with real and

permuted data, and additionally with the WGW control, we

believe that the actual contribution of the aforementioned

problems to the final result is strongly surpassed by the

combination of true minor effect size variants. Still, we considered

appropriated the introduction of the GATES procedure that is

specifically designed to directly address the gene size and LD

structure issues and thus we ended up with a more stringent gene-

oriented p-value. Notably, through this approach we replicated

essentially the same SN (i.e. GW and GATES SN1), which was

populated by genes related to glutamate signaling, differing only in

the absence of GNAZ gene whose only association in the meta-

analysis (Table S1; rs4820537, p = 0.02096) was found not

informative in the GATES procedure. Glutamate signaling was

further replicated in the ADNI dataset and this time it reached

significant association levels in three SNs (ADNI-GW SN3, SN4

and SN7).

From a biological point of view, the relationship of these genetic

observations with current knowledge about AD is straightforward.

Glutamate signaling has been reported to regulate multiple

biological processes, including fast excitatory synaptic transmis-

sion, neuronal growth and differentiation, synaptic plasticity,

learning and memory [65,66]. Degenerating neurons and synapses

in AD brains are usually located within regions that project to or

from areas displaying high densities of Ab plaques and tangles [67]

and in this regard, glutamatergic neurons located in the

hippocampus, as well as in other areas of the brain, are severely

affected by these neurotoxic insults [65,67]. Likewise, it has been

established that there is a relationship between glutamate receptor

signaling and soluble Ab oligomers in the hippocampus, affecting

their expression and recycling, which leads to long term

depression, synaptic loss and ultimately to cognitive deficit

[68,69]. Moreover, sustained activation of glutamate receptors at

Figure 5. Overrepresented glutamate signaling components in the functional synapse. The original version of the hsa04724 KEGG
pathway (Glutamatergic synapse) is shown. Black arrows denote direct molecular interaction or relation between gene products (green squares) or
other types of molecules (unfilled circles), while black arrows with dashed lines denote an indirect effect between the each node. The relationship
with other KEGG pathways is shown with the presence of white round rectangles. Gene symbols in components belonging to Meta-GW and META-
GATES SN1 are denoted in red.
doi:10.1371/journal.pone.0095413.g005
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Figure 6. Gene expression analysis of glutamate signaling components in selected human brain regions. Heatmap and dendrogram of
normalized expression levels of the 20 genes of interest displaying significant clustering in: (A) hippocampal formation (HIF); (B) hypothalamus (HY);
(C) Dorsal Thalamus (DT); and (D) white matter (WM). Heatmaps were generated using normalized Z score gene-wise expression values, which were
averaged from 6 brain donor individuals (ids. H0351.2001, H0351.2002, H0351.1009, H0351.1012, H0351.1015 and H0351.1016). Bright red and green
color indicates high (Z.2) and low expression (Z,2). Highly correlated gene clusters (Euclidean distance correlation coefficient r.0.7) are denoted by
colored lines in the dendrograms: green clusters, indicates low expression patterns; red clusters show high levels of expression of correlated genes.
Gene expression patterns in the corresponding substructures are shown for HIF: Dentate Gyrus (DG); Cornu Ammonis 1 (CA1); Cornu Ammonis 2
(CA2); Cornu Ammonis 3 (CA3); Cornu Ammonis 4 (CA4) and Subiculum (S). For HY: Anterior Hypothalamic Area (AHA); Lateral hypothalamic Area
(LHA); Paraventricular Nucleus of the Hypothalamus (PVH); Supraoptic Nucleus (SO); Lateral Hypothalamic Area, Mammillary Region (LHM);
Mammillary Body (MB); Posterior Hypothalamic Area (PHA); Supramammillary Nucleus (SuM); Tuberomammillary Nucleus (TM); Preoptic Region
(PrOR); Arcuate Nucleus of the Hypothalamus (ARH); Dorsomedial Hypothalamic Nucleus (DMH); Lateral Hypothalamic Area, Tuberal Region (LHT);
Lateral Tuberal Nucleus (LTu); Perifornical Nucleus (PeF); Ventromedial Hypothalamic Nucleus (VMH). For DT: Anterior Group of Nuclei (DTA); Caudal
Group of intralaminar Nuclei (ILc); Dorsal Lateral Geneiculate Nucleus (LGd); Lateral Group of Nuclei, Dorsal Division (DTLd); Lateral Group of Nuclei,
Ventral Division (DTLv); Medial Geniculate Complex (MG); Medial Group of Nuclei (DTM); Posterior Group of Nuclei (DTP); Rostral Group of
Intralaminar Nuclei (ILr). For WM: Cc: Corpus callosum; Cgb: Cingulum bundle.
doi:10.1371/journal.pone.0095413.g006
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the synapse rise Ca2+ influxes and second messenger levels

activating neuronal nitric oxide synthase (NO), increasing

reactive nitrogen and oxygen species, thus contributing to

neuronal damage independently of the presence of Ab oligomers

[70]. Alternatively, and from a genomic perspective, here we

provide strong evidence that common genetic variants within a

complete set of genes acting as ionotropic/metabotropic gluta-

mate receptors and its downstream effectors are associated in a

network context with AD. Accordingly, it has been recently

reported that pathways related to neurotransmitter receptor-

mediated calcium signaling and long-term potentiation are

similarly associated with mild cognitive impairment and AD

[26]. In addition we have found that the expression pattern of

these glutamate signaling genes cluster in specific brain regions,

which are affected during the development of the disease, such as

the hippocampal formation and the hypothalamus. Therefore, it

will be interesting to learn if the genes identified through our

network-based pathway approach are spatially and coordinately

modulated at the transcriptional or post-transcriptional level as a

result of various trophic or toxic stimuli. Finally, our data extends

the notion that the remaining genetic risk for complex traits, such

as AD, is likely explained by the accumulation of functional

genetic variants inside an entire pathway, rather than by punctual

independent mutations.

Supporting Information

Figure S1 Quantile-Quantile (Q-Q) plots for GWAS
datasets and combined meta-analysis. Comparison of the

association results for each SNP (black dots) with those expected

by chance (red line) in TGen1 (A), NIA-LOAD/NCRAD (B),

Pfizer (C) the final meta-analysis (D) and in the ADNI replication

dataset. In each dataset, the genomic inflation factor (l) is shown.

Values of l between 0.9 and 1.1 are considered unbiased by the

population structure.

(TIF)

Figure S2 Gene structure comparison between modules
detected with real and permuted data. Gene coincidences

between Meta-GW SN1 (49 genes, light grey circle) and Meta-

GATES SN1 (48 genes, dark grey circle) are shown in a Venn

diagram and compared with the total number of genes in the first

10 modules of each permuted analysis: Meta-GW SN1 to SN10

(397 genes, light grey circle) and Meta-GATES SN1 to SN10 (354

genes, dark grey circle).

(TIF)

Figure S3 Glutamate signaling SNs overrepresented in
AD. Meta-GW SN1 in conjunction with Meta-GATES SN1, and

ADNI-GW SN3, ADNI-GW SN4, ADNI-GW SN7 sub-networks

are shown in A through D, respectively. Nodes represent genes

and edges their corresponding interactions extracted from FPAN

based upon the information in the STRING database. Network

legend is provided at the bottom panel: the node color represents

the OR behavior in a gradient from green to red values (i.e. green:

OR,1; red OR.1; white: OR = 1), denoting protection and risk,

respectively. Similarly, node size and edge thickness are propor-

tional to the -log10 p-value obtained in the meta-analysis (if

absent, node size is the minimum) and the combined score of

interaction. Asterisk in GNAZ gene is a reminder that this gene is

only present in Meta-GW SN1.

(TIF)

Table S1 Meta-analysis associations (p-value ,0,05)
with additional annotations.

(XLSX)

Table S2 Gene-wise and GATES p-values introduced to
FPAN in the Meta and ADNI analyses.
(XLSX)

Table S3 Gene structure concordance for the main sub-
network (SN1) across module search iterations.
(XLSX)

Table S4 Top 10 Sub-networks main features and
components.
(XLSX)

Table S5 Gene Ontologies terms overrepresented in
Meta and ADNI Top 10 Sub-networks.
(XLSX)

Table S6 ADNI Associations with additional annota-
tions.
(XLSX)

Table S7 KEGG pathways overrepresented in Meta and
ADNI Top 10 Sub-networks.
(XLSX)

Checklist S1 PRISMA Checklist.
(PDF)

Acknowledgments

We would like to thank the Translational Genomics Research Institute

(TGen) and the Pfizer Inc. Pharmaceutical Company (Pfizer), and all

contributors associated who kindly provided access to the genotypic and

phenotypic association data. Likewise we thank the Joint Addiction, Aging,

and Mental Health (JAAMH) Data Access Committee of the Database of

Genotypes and Phenotypes (dbGaP) that allowed to access the National

Institute of Aging (NIA) and National Cell Repository For Alzheimer

disease (NIA-LOAD/NCRAD) dataset under the accession number

phs000168.v1.p1, which was collected and analyzed under the supervision

of Richard Mayeux MD, MSc, Columbia University, New York, NY, USA

and Tatiana Foroud PhD, from the NCRAD and Indiana University,

Indianapolis, IN, USA. Full list of co-investigators is provided at ?http://

www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_

id = phs000168.v1.p1. The genotyping, cleaning and harmonization of the

NIA-LOAD/NCRAD dataset was carried out at the Johns Hopkins

University Center for Inherited Disease Research (CIDR), Baltimore, MD,

USA. Additionally, data collection and sharing for this project was funded

by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National

Institutes of Health Grant U01 AG024904) and DOD ADNI (Department

of Defense award number W81XWH-12-2-0012). ADNI is funded by the

National Institute on Aging, the National Institute of Biomedical Imaging

and Bioengineering, and through generous contributions from the

following: Alzheimer’s Association; Alzheimer’s Drug Discovery Founda-

tion; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company;

Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; F.

Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE

Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immu-

notherapy Research & Development, LLC.; Johnson & Johnson Pharma-

ceutical Research & Development LLC.; Medpace, Inc.; Merck & Co.,

Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Novartis

Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier;

Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian

Institutes of Health Research is providing funds to support ADNI clinical

sites in Canada. Private sector contributions are facilitated by the

Foundation for the National Institutes of Health (?www.fnih.org). The

grantee organization is the Northern California Institute for Research and

Education, and the study is coordinated by the Alzheimer’s Disease

Cooperative Study at the University of California, San Diego. ADNI data

are disseminated by the Laboratory for Neuro Imaging at the University of

Southern California. Finally, we wish to thank the participation of the

patients and their families that ultimately have made possible this study.

Data used in preparation of this article were obtained from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As

such, the investigators within the ADNI contributed to the design and

Glutamate Signaling is Overrepresented in AD GWAS

PLOS ONE | www.plosone.org 14 April 2014 | Volume 9 | Issue 4 | e95413



implementation of ADNI and/or provided data but did not participate in

analysis or writing of this report. A complete listing of ADNI investigators

can be found at: ?http://adni.loni.usc.edu/wp-content/uploads/how_to_

apply/ADNI_Acknowledgement_List.pdf.

Author Contributions

Conceived and designed the experiments: EPP BIB GVD. Performed the

experiments: EPP BIB CFV MAA MEA. Analyzed the data: EPP BIB

GDU AER CO GVD. Wrote the paper: EPP BIB GVD.

References

1. Bettens K, Sleegers K, Van Broeckhoven C (2010) Current status on Alzheimer

disease molecular genetics: from past, to present, to future. Hum Mol Genet 19:

R4–R11.

2. Lambert JC, Schraen-Maschke S, Richard F, Fievet N, Rouaud O, et al. (2009)

Association of plasma amyloid beta with risk of dementia: the prospective Three-

City Study. Neurology 73: 847–853.

3. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease:

progress and problems on the road to therapeutics. Science 297: 353–356.

4. Guerreiro RJ, Gustafson DR, Hardy J (2012) The genetic architecture of

Alzheimer’s disease: beyond APP, PSENs and APOE. Neurobiol Aging 33: 437–

456.

5. Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-

Vance MA, et al. (1993) Association of apolipoprotein E allele epsilon 4 with

late-onset familial and sporadic Alzheimer’s disease. Neurology 43: 1467–1472.

6. Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, et

al. (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased

frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl

Acad Sci U S A 90: 1977–1981.

7. Kamboh MI (2004) Molecular genetics of late-onset Alzheimer’s disease. Ann

Hum Genet 68: 381–404.

8. Coon KD, Myers AJ, Craig DW, Webster JA, Pearson JV, et al. (2007) A high-

density whole-genome association study reveals that APOE is the major

susceptibility gene for sporadic late-onset Alzheimer’s disease. J Clin Psychiatry

68: 613–618.

9. Meyer MR, Tschanz JT, Norton MC, Welsh-Bohmer KA, Steffens DC, et al.

(1998) APOE genotype predicts when—not whether—one is predisposed to

develop Alzheimer disease. Nat Genet 19: 321–322.

10. Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE (2007) Systematic

meta-analyses of Alzheimer disease genetic association studies: the AlzGene

database. Nat Genet 39: 17–23.

11. Cowperthwaite MC, Mohanty D, Burnett MG (2010) Genome-wide association

studies: a powerful tool for neurogenomics. Neurosurg Focus 28: E2.

12. Zaykin DV, Zhivotovsky LA (2005) Ranks of genuine associations in whole-

genome scans. Genetics 171: 813–823.

13. Hu X, Pickering E, Liu YC, Hall S, Fournier H, et al. (2011) Meta-analysis for

genome-wide association study identifies multiple variants at the BIN1 locus

associated with late-onset Alzheimer’s disease. PLoS One 6: e16616.

14. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, et al. (2009)

Genome-wide association study identifies variants at CLU and PICALM

associated with Alzheimer’s disease. Nat Genet 41: 1088–1093.

15. Lambert JC, Heath S, Even G, Campion D, Sleegers K, et al. (2009) Genome-

wide association study identifies variants at CLU and CR1 associated with

Alzheimer’s disease. Nat Genet 41: 1094–1099.

16. Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, et al. (2011)

Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP

are associated with Alzheimer’s disease. Nat Genet 43: 429–435.

17. Baranzini SE, Galwey NW, Wang J, Khankhanian P, Lindberg R, et al. (2009)

Pathway and network-based analysis of genome-wide association studies in

multiple sclerosis. Hum Mol Genet 18: 2078–2090.

18. Lechner M, Hohn V, Brauner B, Dunger I, Fobo G, et al. (2012) CIDeR:

multifactorial interaction networks in human diseases. Genome Biol 13: R62.

19. Reiman EM, Webster JA, Myers AJ, Hardy J, Dunckley T, et al. (2007) GAB2

alleles modify Alzheimer’s risk in APOE epsilon4 carriers. Neuron 54: 713–720.

20. Lee JH, Cheng R, Graff-Radford N, Foroud T, Mayeux R (2008) Analyses of

the National Institute on Aging Late-Onset Alzheimer’s Disease Family Study:

implication of additional loci. Arch Neurol 65: 1518–1526.

21. Wijsman EM, Pankratz ND, Choi Y, Rothstein JH, Faber KM, et al. (2011)

Genome-wide association of familial late-onset Alzheimer’s disease replicates

BIN1 and CLU and nominates CUGBP2 in interaction with APOE. PLoS

Genet 7: e1001308.

22. Mailman MD, Feolo M, Jin Y, Kimura M, Tryka K, et al. (2007) The NCBI

dbGaP database of genotypes and phenotypes. Nat Genet 39: 1181–1186.

23. The_International_HapMap_Consortium (2005) A haplotype map of the

human genome. Nature 437: 1299–1320.

24. Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR (2010) MaCH: using sequence

and genotype data to estimate haplotypes and unobserved genotypes. Genet

Epidemiol 34: 816–834.

25. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, et al. (2007)

PLINK: a tool set for whole-genome association and population-based linkage

analyses. Am J Hum Genet 81: 559–575.

26. Ramanan VK, Kim S, Holohan K, Shen L, Nho K, et al. (2012) Genome-wide

pathway analysis of memory impairment in the Alzheimer’s Disease Neuroim-

aging Initiative (ADNI) cohort implicates gene candidates, canonical pathways,

and networks. Brain Imaging Behav 6: 634–648.

27. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, et al. (2006)

Principal components analysis corrects for stratification in genome-wide
association studies. Nat Genet 38: 904–909.

28. Team R (2012) R: A language and environment for statistical computing.

R Foundation for Statistical Computing Vienna Austria.

29. Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, et al. (2004) The

UCSC Table Browser data retrieval tool. Nucleic Acids Res 32: D493–496.

30. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred
reporting items for systematic reviews and meta-analyses: the PRISMA

statement. PLoS Med 6: e1000097.

31. Li MX, Gui HS, Kwan JS, Sham PC (2011) GATES: a rapid and powerful

gene-based association test using extended Simes procedure. Am J Hum Genet
88: 283–293.

32. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, et al. (2011) The
STRING database in 2011: functional interaction networks of proteins, globally

integrated and scored. Nucleic Acids Res 39: D561–568.

33. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, et al. (2007)

Integration of biological networks and gene expression data using Cytoscape.
Nat Protoc 2: 2366–2382.

34. Ideker T, Ozier O, Schwikowski B, Siegel AF (2002) Discovering regulatory and

signalling circuits in molecular interaction networks. Bioinformatics 18 Suppl 1:

S233–240.

35. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, et al. (2004) The Gene
Ontology (GO) database and informatics resource. Nucleic Acids Res 32: D258–

261.

36. Arakawa K, Kono N, Yamada Y, Mori H, Tomita M (2005) KEGG-based

pathway visualization tool for complex omics data. In Silico Biol 5: 419–423.

37. Grossmann S, Bauer S, Robinson PN, Vingron M (2007) Improved detection of
overrepresentation of Gene-Ontology annotations with parent child analysis.

Bioinformatics 23: 3024–3031.

38. Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, et al. (2010)

The GeneMANIA prediction server: biological network integration for gene
prioritization and predicting gene function. Nucleic Acids Res 38: W214–220.

39. Westfall PH, Young SS (1993) Resampling-based multiple testing: Examples and
methods for p-value adjustment: Wiley-Interscience.

40. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes.

Nucleic Acids Res 28: 27–30.

41. Team R (2010) R: A language and environment for statistical computing.

R Foundation for Statistical Computing Vienna Austria.

42. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, et al. (2012)

An anatomically comprehensive atlas of the adult human brain transcriptome.
Nature 489: 391–399.

43. Miller JA, Cai C, Langfelder P, Geschwind DH, Kurian SM, et al. (2011)

Strategies for aggregating gene expression data: the collapseRows R function.
BMC Bioinformatics 12: 322.

44. Saldanha AJ (2004) Java Treeview—extensible visualization of microarray data.
Bioinformatics 20: 3246–3248.

45. Melum E, Franke A, Karlsen TH (2009) Genome-wide association studies—a

summary for the clinical gastroenterologist. World J Gastroenterol 15: 5377–

5396.

46. Fleiss JL, Gross AJ (1991) Meta-analysis in epidemiology, with special reference
to studies of the association between exposure to environmental tobacco smoke

and lung cancer: a critique. J Clin Epidemiol 44: 127–139.

47. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin

Trials 7: 177–188.

48. Ades AE, Lu G, Higgins JP (2005) The interpretation of random-effects meta-

analysis in decision models. Med Decis Making 25: 646–654.

49. Barsh GS, Copenhaver GP, Gibson G, Williams SM (2012) Guidelines for
genome-wide association studies. PLoS Genet 8: e1002812.

50. Aisen PS, Petersen RC, Donohue MC, Gamst A, Raman R, et al. (2010) Clinical
Core of the Alzheimer’s Disease Neuroimaging Initiative: progress and plans.

Alzheimers Dement 6: 239–246.

51. Holmans P (2010) Statistical methods for pathway analysis of genome-wide data
for association with complex genetic traits. Adv Genet 72: 141–179.

52. Grabrucker AM, Schmeisser MJ, Schoen M, Boeckers TM (2011) Postsynaptic
ProSAP/Shank scaffolds in the cross-hair of synaptopathies. Trends Cell Biol 21:

594–603.

53. Fotuhi M, Do D, Jack C (2012) Modifiable factors that alter the size of the

hippocampus with ageing. Nat Rev Neurol 8: 189–202.

54. de Jong LW, Ferrarini L, van der Grond J, Milles JR, Reiber JH, et al. (2011)
Shape abnormalities of the striatum in Alzheimer’s disease. J Alzheimers Dis 23:

49–59.

55. de Leeuw FE, Barkhof F, Scheltens P (2005) Progression of cerebral white matter

lesions in Alzheimer’s disease: a new window for therapy? J Neurol Neurosurg
Psychiatry 76: 1286–1288.

Glutamate Signaling is Overrepresented in AD GWAS

PLOS ONE | www.plosone.org 15 April 2014 | Volume 9 | Issue 4 | e95413

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf


56. Alix JJ, Domingues AM (2011) White matter synapses: form, function, and

dysfunction. Neurology 76: 397–404.

57. Tamminga CA, Southcott S, Sacco C, Wagner AD, Ghose S (2012) Glutamate

dysfunction in hippocampus: relevance of dentate gyrus and CA3 signaling.

Schizophr Bull 38: 927–935.

58. Xu J, Kurup P, Nairn AC, Lombroso PJ (2012) Striatal-enriched protein

tyrosine phosphatase in Alzheimer’s disease. Adv Pharmacol 64: 303–325.

59. Cruchaga C, Nowotny P, Kauwe JS, Ridge PG, Mayo K, et al. (2011)

Association and expression analyses with single-nucleotide polymorphisms in

TOMM40 in Alzheimer disease. Arch Neurol 68: 1013–1019.

60. Roses AD, Lutz MW, Amrine-Madsen H, Saunders AM, Crenshaw DG, et al.

(2010) A TOMM40 variable-length polymorphism predicts the age of late-onset

Alzheimer’s disease. Pharmacogenomics J 10: 375–384.

61. Jun G, Vardarajan BN, Buros J, Yu CE, Hawk MV, et al. (2012) Comprehensive

Search for Alzheimer Disease Susceptibility Loci in the APOE Region. Arch

Neurol: 1–10.

62. Antunez C, Boada M, Gonzalez-Perez A, Gayan J, Ramirez-Lorca R, et al.

(2011) The membrane-spanning 4-domains, subfamily A (MS4A) gene cluster

contains a common variant associated with Alzheimer’s disease. Genome Med 3:

33.

63. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, et al. (2013)

Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for
Alzheimer’s disease. Nat Genet 45: 1452–1458.

64. Torkamani A, Topol EJ, Schork NJ (2008) Pathway analysis of seven common

diseases assessed by genome-wide association. Genomics 92: 265–272.
65. Mattson MP (2008) Glutamate and neurotrophic factors in neuronal plasticity

and disease. Ann N Y Acad Sci 1144: 97–112.
66. Yang JL, Sykora P, Wilson DM, 3rd, Mattson MP, Bohr VA (2011) The

excitatory neurotransmitter glutamate stimulates DNA repair to increase

neuronal resiliency. Mech Ageing Dev 132: 405–411.
67. Revett TJ, Baker GB, Jhamandas J, Kar S (2012) Glutamate system, amyloid ss

peptides and tau protein: functional interrelationships and relevance to
Alzheimer disease pathology. J Psychiatry Neurosci 38: 6–23.

68. Almeida CG, Tampellini D, Takahashi RH, Greengard P, Lin MT, et al. (2005)
Beta-amyloid accumulation in APP mutant neurons reduces PSD-95 and GluR1

in synapses. Neurobiol Dis 20: 187–198.

69. Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, et al. (2007)
Natural oligomers of the Alzheimer amyloid-beta protein induce reversible

synapse loss by modulating an NMDA-type glutamate receptor-dependent
signaling pathway. J Neurosci 27: 2866–2875.

70. Nakamura T, Lipton SA (2009) Cell death: protein misfolding and neurode-

generative diseases. Apoptosis 14: 455–468.

Glutamate Signaling is Overrepresented in AD GWAS

PLOS ONE | www.plosone.org 16 April 2014 | Volume 9 | Issue 4 | e95413


