Biostatistics Core Report to Steering Committee: ADNI-2 Accomplishments and ADNI-3 Challenges

Laurel Beckett, Danielle Harvey, Michael Donohue with help from Daniel Tancredi, Naomi Saito, Teresa Filshtein, and Cathy Wang

University of California, Davis and University of California, San Diego (MD)

labeckett@ucdavis.edu

19 April 2015

= 900

・ロン ・回 と ・ ヨン ・ ヨン …

Outline

1 ADNI-2 Highlights

2 ADNI-3 Planning

ADNI Biostatistics Core

ADNI SC April 2015

Highlights of Biostatistics Core accomplishments in ADNI-2

How have we done on our goals?

- Participated in ADNI administration, helped other users.
- Design and analysis of ADNI data, including novel statistical approaches:
 - Richer longitudinal data allows modeling trajectories and sequences.
 - New groups (eMCI, SMC) increase breadth of data across disease process.
 - New measures increase depth of data on participants.

Extended longitudinal follow-up: rich but challenging

- Some participants (from ADNI-1) followed almost 10 years now.
- Not everyone has every measurement, and some change, so we've had to work out ways to reconcile.
- For example, is "amyloid positive" the same if based on CSF, PiB, or AV45?
- We cover a wide range from NC to MCI to AD, but rarely in same person!
- Sophisticated statistical methods help us to align people against age or study time.

- 4 回 ト - 4 回 ト

Rich longitudinal panel data allow sophisticated modeling

Figure : Genetics, amyloid play roles. (Donohue et al, JAMA Neur 2014)

Extended follow-up picks up conversion of NC

Figure : Amyloid+ (CSF or PET) predicts longer-term risk of MCI

Two new groups added since ADNI-1: eMCI and SMC

- Goal was to fill in gap between NC and later MCI.
- Are some biomarkers already bad in eMCI and SMC?
- Do some problems not show up until later in MCI?
- We tried to get later MCI and AD groups to be "pure" but it's harder in earlier stages.
- What have we learned about heterogeneity of subtle, early clinical problems?

글▶ ★ 글▶

э

New groups fill in the gaps between NC and MCI

Figure : SMC and eMCI fit in between NC and MCI, as expected

Baseline Hippocampal Volume by diagnosis

Baseline ADAS-Cog(total13) by diagnosis

ADNI Biostatistics Core

ADNI SC April 2015

Baseline FDG-pet rall by diagnosis

Baseline Diagnosis

SMC similar to NC but both are heterogeneous

- We used unsupervised clustering to look for subgroups in ADNI-2 NC and SMC.
- Similar method to Nettiksimmons 2010 in ADNI-1 NC, 2014 in ADNI-1 MCI.
- Clusters based on volumetrics, CSF measures.
- Similar results to Nettiksimmons for both NC and SMC.
- Three subgroups in each diagnostic group, quite similar.

Clusters look healthy, pre-AD-like, and maybe vascular

2

ADNI Biostatistics Core

We also added new measures: are they prognostic?

- Amyloid imaging now done on everyone.
- What is prognostic value?
- Does it truly show up really early? How early?
- It's early to see much in NC or SMC.
- But eMCI have been followed longer.

2

New measures have prognostic value even in eMCI

ADNI Biostatistics Core

ADNI SC April 2015

Biostatistics goals for ADNI-3 not greatly changed

The Biostatistics Core will:

- Provide analytic support for planning and efficient designs.
- Carry out interim and final analyses to address key research questions.
- Participate in ongoing operations and administration.
- Provide intellectual leadership for academic and industry biostatisticians interested in ADNI.
- Develop new biostatistical methodology needed for ADNI-3.

ADNI-3 Challenges

Immediate challenge: ADNI-3 design, and implications for sample size, power.

- How many measurements, and how frequently, will determine precision and power.
- What is the impact of drop-out assumptions?
- Many possible designs proposed, to balance burden, cost, and knowledge gained.
- Example question: Should we consider dropping one of the 5 proposed Tau PET observations for MCI?
 - Could save on cost, add more people, or replace with longitudinal FDG.
 - But what impact on precision, power?

We developed systematic approach to address design questions

- Direct calculation if no drop-out, simulation if drop-out assumed.
- Estimate precision of estimated annualized change, power for comparisons.
- Need to know or guess ratio of between-to-within-person noise.
- Example: Drop 3rd or 4th Tau PET observation for MCI
 - If no drop-out: no loss in precision for dropping 3rd, 2% loss for dropping 4th.
 - If 10% drop-out/yr, 3% loss for dropping 3rd, 8.8% for dropping 4th.
 - Program allows varying scenario, assumptions; results quite robust.
 - Will be used for final ADNI-3 sample size and power calculations.

Another statistical challenge: complicated longitudinal data

- Participants: mix of carry-over from ADNI-1, ADNI-GO, ADNI-2, and new recruits.
- Measurements: new ones keep getting added, old ones changed.
 - Amyloid imaging added in ADNI-GO.
 - PiB replaced by AV45.
 - Now Tau imaging to be added, FDG dropped.
 - Only half had FDG in ADNI-1, only half had CSF.
 - Some people drop out of some measures (e.g. CSF rate now low.)
- Resulting data very challenging for statistical modeling; new tools needed!

Partnerships help to address challenges

- New NACC/IALSA project: AD biostat folks to develop methods and try out using different datasets.
 - Natural history with some kinds of observations showing up late.
 - Clinical trials: novel ways to get better outcome measures.
 - One-day conference in Chicago, Sept 24 (funded).
 - Idea: people working with datasets they know, then compare findings for robustness.
- ADNI-DIAN partnership: Compare images and biomarkers and clinical findings in early-onset disease with ADNI.

Any questions about the next adventure?

ADNI Biostatistics Core

ADNI SC April 2015