×
  • Select the area you would like to search.
  • ACTIVE INVESTIGATIONS Search for current projects using the investigator's name, institution, or keywords.
  • EXPERTS KNOWLEDGE BASE Enter keywords to search a list of questions and answers received and processed by the ADNI team.
  • ADNI PDFS Search any ADNI publication pdf by author, keyword, or PMID. Use an asterisk only to view all pdfs.
Filter results by:

3740 Total Publications

Associations Between Neuropsychiatric Symptoms and Cerebral Amyloid Deposition in Cognitively Impaired...
Bensamoun D, Guignard R, Furst AJ, et al.
PMID: 26484900 ; 2015; Journal Journal of Alzheimer's Disease; vol. 49; no. 2; pp. 387-98;
A voxel-based morphometry comparison of the 3.0T ADNI-1 and ADNI-2 volumetric MRI protocols
Brunton, S., Gunasinghe, C., Jones, N., Kempton, M. J., Westman, E., & Simmons, A.
PMID: 25092796 ; PMCID:4405045 ; 2015; Journal International Journal of Geriatric Psychiatry; vol. 30; no. 5; pp. 531-8; doi:10.1002/gps.4179
ADNI 2 Clinical Core: Progress and Plans
Aisen PS1, Petersen RC2, Donohue M3, Weiner MW4; Alzheimer's Disease Neuroimaging Initiative
PMID: 26194309 ; PMCID:4643840 ; 2015; Journal Alzheimer's and Dementia; vol. 11; no. 7; pp. 734-9; doi:10.1016/j.jalz.2015.05.005
Relationship between hippocampal atrophy and neuropathology markers: A 7T MRI validation study of the EADC-ADNI Harmonized Hippocampal Segmentation Protocol
Apostolova, L. G., Zarow, C., Biado, K., Hurtz, S., Boccardi, M., Somme, J., … Frisoni, G. B.
PMID: 25620800 ; PMCID:4348340 ; 2015; Journal Alzheimer's and Dementia; vol. 11; no. 2; pp. 139-50; doi:10.1016/j.jalz.2015.01.001
Atlas based brain volumetry: How to distinguish regional volume changes due to biological or physiological effects from inherent noise of the methodology
R. Opfer, P. Suppa, T. S. Kepp, L. S., S. H., Hans-J. and A. s. D. N. Initiative
PMID: 26723849 ; 2015; Journal Magnetic resonance imaging; vol. 34; no. 4; pp. 455-461; doi:10.1016/j.mri.2015.12.031
White matter signal abnormality quality differentiates mild cognitive impairment that converts to Alzheimer’s disease from nonconverters
Lindemer, E. R., Salat, D. H., Smith, E. E., Nguyen, K., Fischl, B., & Greve, D. N.
PMID: 26095760 ; PMCID:4523418 ; 2015; Journal Neurobiology of Aging; vol. 36; no. 9; pp. 2447-57; doi:10.1016/j.neurobiolaging.2015.05.011
Multi-Modal Neuroimaging Feature Learning for Multi-Class Diagnosis of Alzheimer’s Disease
Liu, S., Liu, S., Cai, W., Che, H., Pujol, S., Kikinis, R., … Fulham, M. J.
2015; Journal IEEE Transactions on Bio-Medical Engineering; vol. 62; no. 4; pp. 1132-40; doi:10.1109/TBME.2014.2372011
Prediction of Alzheimer’s disease pathophysiology based on cortical thickness patterns
J. Hwang, C. M. Kim, S. Jeon, J. M. Lee, Y. J. Hong, J. H. Roh, J. H. Lee, J. Y. Koh, D. L. Na and I. Alzheimer's Disease Neuroimaging
PMID: 27239533 ; PMCID:4879518 ; 2015; Journal Alzheimers Dement (Amst); vol. 2; pp. 58-67; doi:10.1016/j.dadm.2015.11.008
Predicting Reduction of Cerebrospinal Fluid β-Amyloid 42 in Cognitively Healthy Controls.
Mattsson, N., Insel, P. S., Donohue, M., Jagust, W., Sperling, R., Aisen, P., & Weiner, M. W.
PMID: 25775167 ; 2015; Journal JAMA Neurology; vol. 72; no. 5; pp. 1-7; doi:10.1001/jamaneurol.2014.4530