×
  • Select the area you would like to search.
  • ACTIVE INVESTIGATIONS Search for current projects using the investigator's name, institution, or keywords.
  • EXPERTS KNOWLEDGE BASE Enter keywords to search a list of questions and answers received and processed by the ADNI team.
  • ADNI PDFS Search any ADNI publication pdf by author, keyword, or PMID. Use an asterisk only to view all pdfs.
Filter results by:

2110 Total Publications

A Functional Varying-Coefficient Single-Index Model for Functional Response Data
J. Li, C. Huang and H. Zhu
PMID: 29200540 ; PMCID:5710774 ; 2017; Journal Journal of the American Statistical Association; vol. 112; no. 519; pp. 1169-1181; doi:10.1080/01621459.2016.1195742
Biomarkers and Functional Decline in Prodromal Alzheimer's Disease.
C. Robb, C. Udeh-Momoh, S. Wagenpfeil, J. Schope, P. Alexopoulos, R. Perneczky and I. Alzheimer's Disease Neuroimaging
PMID: 28372331 ; 2017; Journal J Alzheimers Dis; vol. 58; no. 1; pp. 69-78; doi:10.3233/JAD-161162
The prevalence and biomarkers’ characteristic of rapidly progressive Alzheimer’s disease from the Alzheimer’s Disease Neuroimaging Initiative database
M. Ba, X. Li, K. P. Ng, T. A. Pascoal, S. Mathotaarachchi, P. Rosa-Neto, S. Gauthier and I. Alzheimer's Disease Neuroimaging
PMID: 29067322 ; PMCID:5651370 ; 2017; Journal Alzheimers Dement (N Y); vol. 3; no. 1; pp. 107-113; doi:10.1016/j.trci.2016.12.005
Biomarkers and Functional Decline in Prodromal Alzheimer's Disease.
C. Robb, C. Udeh-Momoh, S. Wagenpfeil, J. Schope, P. Alexopoulos, R. Perneczky and I. Alzheimer's Disease Neuroimaging
PMID: 28372331 ; 2017; Journal J Alzheimers Dis; vol. 58; no. 1; pp. 69-78; doi:10.3233/JAD-161162
Autotaxin is Related to Metabolic Dysfunction and Predicts Alzheimer’s Disease Outcomes
K. E. McLimans, A. A. Willette and I. Alzheimer's Disease Neuroimaging
PMID: 27911319 ; PMCID:5654316 ; 2017; Journal J Alzheimers Dis; vol. 56; no. 1; pp. 403-413; doi:10.3233/JAD-160891
A Comparison of Accelerated and Non-accelerated MRI Scans for Brain Volume and Boundary Shift Integral Measures of Volume Change: Evidence from the ADNI Dataset
E. N. Manning, K. K. Leung, J. M. Nicholas, I. B. Malone, M. J. Cardoso, J. M. Schott, N. C. Fox, J. Barnes and I. Alzheimer's Disease Neuroimaging
PMCID:5443885 ; 2017; Journal Neuroinformatics; vol. 15; no. 2; pp. 215-226; doi:10.1007/s12021-017-9326-0
Deep ensemble learning of sparse regression models for brain disease diagnosis
H. I. Suk, S. W. Lee, D. Shen and I. Alzheimer's Disease Neuroimaging
PMCID:5808465 ; 2017; Journal Med Image Anal; vol. 37; pp. 101-113; doi:10.1016/j.media.2017.01.008
Ventricular and Periventricular Anomalies in the Aging and Cognitively Impaired Brain
K. L. Todd, T. Brighton, E. S. Norton, S. Schick, W. Elkins, O. Pletnikova, R. H. Fortinsky, J. C. Troncoso, P. J. Molfese, S. M. Resnick, J. C. Conover and I. Alzheimer's Disease Neuroimaging
PMCID:5771258 ; 2017; Journal Front Aging Neurosci; vol. 9; pp. 445; doi:10.3389/fnagi.2017.00445
Genome-wide association study identifies MAPT locus influencing human plasma tau levels
J. Chen, J. T. Yu, K. Wojta, H. F. Wang, H. Zetterberg, K. Blennow, J. S. Yokoyama, M. W. Weiner, J. H. Kramer, H. Rosen, B. L. Miller, G. Coppola, A. L. Boxer and I. Alzheimer's Disease Neuroimaging
PMID: 28100725 ; PMCID:5317386 ; 2017; Journal Neurology; vol. 88; no. 7; pp. 669-676; doi:10.1212/WNL.0000000000003615