• Select the area you would like to search.
  • ACTIVE INVESTIGATIONS Search for current projects using the investigator's name, institution, or keywords.
  • EXPERTS KNOWLEDGE BASE Enter keywords to search a list of questions and answers received and processed by the ADNI team.
  • ADNI PDFS Search any ADNI publication pdf by author, keyword, or PMID. Use an asterisk only to view all pdfs.
Principal Investigator  
Principal Investigator's Name: Jiachen Cai
Institution: University of Cambridge
Department: MRC Biostatistics Unit
Proposed Analysis: The increasing availability of high-dimensional biomarker measurements taken longitudinally can facilitate analysis of the biological mechanisms underlying disease and clustering of patients, as required for precision medicine. Existing approaches can only deal with part of the data structure but fail to jointly model all of them: specifically, Bayesian Latent Factor Analysis (BLFA) [Carvalho et al, 2008] can be used to uncover the latent structure, drastically reducing the dimension; whereas, treating the longitudinal factors as functional data, Dependent Gaussian Processes (DGP) constructed through kernel convolutions [Shi & Choi, 2011] may be appropriate for modeling time-dependent factor trajectories and correlation between factors simultaneously. We proposed an integrative model combining BLFA and DGP to address this gap, and developed an Empirical Bayes/Gibbs Sampler [Casella, 2001] for estimation and inference. We would like to apply this new methodology to ANDI data.
Additional Investigators