×
  • Select the area you would like to search.
  • ACTIVE INVESTIGATIONS Search for current projects using the investigator's name, institution, or keywords.
  • EXPERTS KNOWLEDGE BASE Enter keywords to search a list of questions and answers received and processed by the ADNI team.
  • ADNI PDFS Search any ADNI publication pdf by author, keyword, or PMID. Use an asterisk only to view all pdfs.
Principal Investigator  
Principal Investigator's Name: Julia TCW
Institution: Boston University
Department: Pharmacology, Physiology & Biophysics
Country:
Proposed Analysis: I have approved DAR data from NIAGADS what will be downloded from ADNI. Here are the project in DAR. Project Name: ADSP xQTL DAR ID: 10828 Population-based genetic association studies have identified over 30 risk loci for Alzheimer’s disease (AD). However, such approaches do not directly reveal the true causal variants or unfold the functional mechanisms of the risk variants. To bridge these gaps, we need to investigate the functional impacts of genetic variants on molecular traits (e.g., mRNA, proteins, and epigenetic modifications) in disease-relevant tissues (e.g. brains) and cell types. We hypothesize that many of the SNPs influence multiple clinical and molecular features. By integrating the genetic associations with functional quantitative trait loci (QTLs), we aim to investigate the potential cascading causal effect of genetic variations in multiple layers of omics data in AD. In this proposal, we plan to perform a multi-omic quantitative trait locus (xQTL) analyses to RNA-seq, proteomics, and DNA methylation data from the large number of postmortem brain tissues available from the AMP-AD project. This study will be part of NIH/NIA Alzheimer's Disease Sequencing Project (ADSP) Functional Genomics xQTL Consortium, a joint effort to generate a reference map of Alzheimer's-related quantitative loci (QTLs). Specifically, our team will be responsible for the xQTL analysis in the Mount Sinai Brain Bank (MSBB) cohort, which contains whole-genome sequencing (WGS), RNA-seq gene expression, proteomics, and DNA methylation data from over 300 AD and control brains. We will follow the unified xQTL calling pipelines developed by the xQTL Consortium to predict QTLs and conduct the subsequent fine mapping, causal inference, and functional annotation integration. We will validate the identified xQTLs in independent samples from the ROSMAP cohort. Through the AMP-AD portal, we already have access to the MSBB and ROSMAP sample meta data, RNA-seq raw read files, proteomics and DNA methylation data. However, the WGS genotype data in the AMP-AD portal were called based on the human hg19 genome, inconsistent with the hg38 genome-based genotype data for other studies in the xQTL consortium. Thus, we are applying for the access to the MSBB and ROSMAP WGS hg38 genome-based genotype data available in NIAGADS.
Additional Investigators  
Investigator's Name: Yun Shen
Proposed Analysis: She will download the data in our cluster and maintain the data for analysis.
Investigator's Name: Alexandre Pelletier
Proposed Analysis: Population-based genetic association studies have identified over 30 risk loci for Alzheimer’s disease (AD). However, such approaches do not directly reveal the true causal variants or unfold the functional mechanisms of the risk variants. To bridge these gaps, we need to investigate the functional impacts of genetic variants on molecular traits (e.g., mRNA, proteins, and epigenetic modifications) in disease-relevant tissues (e.g. brains) and cell types. We hypothesize that many of the SNPs influence multiple clinical and molecular features. By integrating the genetic associations with functional quantitative trait loci (QTLs), we aim to investigate the potential cascading causal effect of genetic variations in multiple layers of omics data in AD. In this proposal, we plan to perform a multi-omic quantitative trait locus (xQTL) analyses to RNA-seq, proteomics, and DNA methylation data from the large number of postmortem brain tissues available from the AMP-AD project. This study will be part of NIH/NIA Alzheimer's Disease Sequencing Project (ADSP) Functional Genomics xQTL Consortium, a joint effort to generate a reference map of Alzheimer's-related quantitative loci (QTLs). Specifically, our team will be responsible for the xQTL analysis in the Mount Sinai Brain Bank (MSBB) cohort, which contains whole-genome sequencing (WGS), RNA-seq gene expression, proteomics, and DNA methylation data from over 300 AD and control brains. We will follow the unified xQTL calling pipelines developed by the xQTL Consortium to predict QTLs and conduct the subsequent fine mapping, causal inference, and functional annotation integration. We will validate the identified xQTLs in independent samples from the ROSMAP cohort. Through the AMP-AD portal, we already have access to the MSBB and ROSMAP sample meta data, RNA-seq raw read files, proteomics and DNA methylation data. However, the WGS genotype data in the AMP-AD portal were called based on the human hg19 genome, inconsistent with the hg38 genome-based genotype data for other studies in the xQTL consortium. Thus, we are applying for the access to the MSBB and ROSMAP WGS hg38 genome-based genotype data available in NIAGADS.
Investigator's Name: Deepti Murthy
Proposed Analysis: Population-based genetic association studies have identified over 30 risk loci for Alzheimer’s disease (AD). However, such approaches do not directly reveal the true causal variants or unfold the functional mechanisms of the risk variants. To bridge these gaps, we need to investigate the functional impacts of genetic variants on molecular traits (e.g., mRNA, proteins, and epigenetic modifications) in disease-relevant tissues (e.g. brains) and cell types. We hypothesize that many of the SNPs influence multiple clinical and molecular features. By integrating the genetic associations with functional quantitative trait loci (QTLs), we aim to investigate the potential cascading causal effect of genetic variations in multiple layers of omics data in AD. In this proposal, we plan to perform a multi-omic quantitative trait locus (xQTL) analyses to RNA-seq, proteomics, and DNA methylation data from the large number of postmortem brain tissues available from the AMP-AD project. This study will be part of NIH/NIA Alzheimer's Disease Sequencing Project (ADSP) Functional Genomics xQTL Consortium, a joint effort to generate a reference map of Alzheimer's-related quantitative loci (QTLs). Specifically, our team will be responsible for the xQTL analysis in the Mount Sinai Brain Bank (MSBB) cohort, which contains whole-genome sequencing (WGS), RNA-seq gene expression, proteomics, and DNA methylation data from over 300 AD and control brains. We will follow the unified xQTL calling pipelines developed by the xQTL Consortium to predict QTLs and conduct the subsequent fine mapping, causal inference, and functional annotation integration. We will validate the identified xQTLs in independent samples from the ROSMAP cohort. Through the AMP-AD portal, we already have access to the MSBB and ROSMAP sample meta data, RNA-seq raw read files, proteomics and DNA methylation data. However, the WGS genotype data in the AMP-AD portal were called based on the human hg19 genome, inconsistent with the hg38 genome-based genotype data for other studies in the xQTL consortium. Thus, we are applying for the access to the MSBB and ROSMAP WGS hg38 genome-based genotype data available in NIAGADS.
Investigator's Name: Minghui Wang
Proposed Analysis: Population-based genetic association studies have identified over 30 risk loci for Alzheimer’s disease (AD). However, such approaches do not directly reveal the true causal variants or unfold the functional mechanisms of the risk variants. To bridge these gaps, we need to investigate the functional impacts of genetic variants on molecular traits (e.g., mRNA, proteins, and epigenetic modifications) in disease-relevant tissues (e.g. brains) and cell types. We hypothesize that many of the SNPs influence multiple clinical and molecular features. By integrating the genetic associations with functional quantitative trait loci (QTLs), we aim to investigate the potential cascading causal effect of genetic variations in multiple layers of omics data in AD. In this proposal, we plan to perform a multi-omic quantitative trait locus (xQTL) analyses to RNA-seq, proteomics, and DNA methylation data from the large number of postmortem brain tissues available from the AMP-AD project. This study will be part of NIH/NIA Alzheimer's Disease Sequencing Project (ADSP) Functional Genomics xQTL Consortium, a joint effort to generate a reference map of Alzheimer's-related quantitative loci (QTLs). Specifically, our team will be responsible for the xQTL analysis in the Mount Sinai Brain Bank (MSBB) cohort, which contains whole-genome sequencing (WGS), RNA-seq gene expression, proteomics, and DNA methylation data from over 300 AD and control brains. We will follow the unified xQTL calling pipelines developed by the xQTL Consortium to predict QTLs and conduct the subsequent fine mapping, causal inference, and functional annotation integration. We will validate the identified xQTLs in independent samples from the ROSMAP cohort. Through the AMP-AD portal, we already have access to the MSBB and ROSMAP sample meta data, RNA-seq raw read files, proteomics and DNA methylation data. However, the WGS genotype data in the AMP-AD portal were called based on the human hg19 genome, inconsistent with the hg38 genome-based genotype data for other studies in the xQTL consortium. Thus, we are applying for the access to the MSBB and ROSMAP WGS hg38 genome-based genotype data available in NIAGADS.