×
  • Select the area you would like to search.
  • ACTIVE INVESTIGATIONS Search for current projects using the investigator's name, institution, or keywords.
  • EXPERTS KNOWLEDGE BASE Enter keywords to search a list of questions and answers received and processed by the ADNI team.
  • ADNI PDFS Search any ADNI publication pdf by author, keyword, or PMID. Use an asterisk only to view all pdfs.
Principal Investigator  
Principal Investigator's Name: Rudolph Tanzi
Institution: Massachusetts General Hospital
Department: Neurology
Country:
Proposed Analysis: Late-onset AD (LOAD) is caused by a complex polygenic and environmental background. Whole genome sequencing provides comprehensive coverage of the genome and has several advantages over exome sequencing and genotyping. We plan to use an aggregated collection of whole genome sequenced family-based and case-control datasets to address the following goals. 1) Identify variants (specifically rare) and regions associated with AD (and related or derived phenotypes) or showing an interaction pattern; 2) Functionally finemap associated loci and identify the functional impact of associated variants in non-coding regions; 3) Use identified variants to validate them in a 3D neural-glial culture model. We will utilize several datasets with whole genome sequencing data, including AD datasets from National Institiute of Mental Health (NIMH) AD family sample and Alzheimer’s Disease Sequencing Project. We will use family-based association tests robust to population confounding and other approaches suitable for case-control studies. Novel analysis approaches will be developed and tested. Analysis results and derived data will be made available to the research community.
Additional Investigators  
Investigator's Name: Dmitry Prokopenko
Proposed Analysis: Late-onset AD (LOAD) is caused by a complex polygenic and environmental background. Whole genome sequencing provides comprehensive coverage of the genome and has several advantages over exome sequencing and genotyping. We plan to use an aggregated collection of whole genome sequenced family-based and case-control datasets to address the following goals. 1) Identify variants (specifically rare) and regions associated with AD (and related or derived phenotypes) or showing an interaction pattern; 2) Functionally finemap associated loci and identify the functional impact of associated variants in non-coding regions; 3) Use identified variants to validate them in a 3D neural-glial culture model. We will utilize several datasets with whole genome sequencing data, including AD datasets from National Institiute of Mental Health (NIMH) AD family sample and Alzheimer’s Disease Sequencing Project. We will use family-based association tests robust to population confounding and other approaches suitable for case-control studies. Novel analysis approaches will be developed and tested. Analysis results and derived data will be made available to the research community.