×
  • Select the area you would like to search.
  • ACTIVE INVESTIGATIONS Search for current projects using the investigator's name, institution, or keywords.
  • EXPERTS KNOWLEDGE BASE Enter keywords to search a list of questions and answers received and processed by the ADNI team.
  • ADNI PDFS Search any ADNI publication pdf by author, keyword, or PMID. Use an asterisk only to view all pdfs.
Principal Investigator  
Principal Investigator's Name: YIYANG WANG
Institution: DePaul Medical Informatics Lab
Department: College of Computing and Digital Media
Country:
Proposed Analysis: We are working on a similar problem but with a different eye disease.We want to develop a predictive model that can also work on your data. Advanced form of age-related macular degeneration (AMD) is a major health burden that can lead to irreversible vision loss in the elderly population. For early preventative interventions, there is a lack of effective tools to predict the prognosis outcome of advanced AMD because of the similar visual appearance of retinal image scans in the early stage and the variability of prognosis paths among patients. The existing prognosis models have several limitations: First, previous studies assume constant time intervals between doctor visits; however, in real world clinical settings, the visits may happen at irregular time intervals. The assumption of constant time intervals will lead to over-optimistic prediction results on specific training data sets while failing to produce generalizable results on new patient data sets. Second, current studies only predict one form of advanced AMD form at a time. Third, computer-based prognosis results are typically not validated on new patients and therefore, it is difficult to evaluate the generalizability of the proposed approaches. Lastly, there is a lack of interpretability of the models and explainability of how a computer-based prognosis determination has been made. The overall objective for this project is to design, develop, and evaluate AMD prognosis prediction models that can detect most relevant images containing AMD biomarkers, manage unevenly spaced sequential optical coherence tomography (OCT) images and predict all advanced AMD forms that can help with the interpretation and explainability of computer-aided prognosis models.
Additional Investigators  
Investigator's Name: Daniela Raicu
Proposed Analysis: Advanced form of age-related macular degeneration (AMD) is a major health burden that can lead to irreversible vision loss in the elderly population. For early preventative interventions, there is a lack of effective tools to predict the prognosis outcome of advanced AMD because of the similar visual appearance of retinal image scans in the early stage and the variability of prognosis paths among patients. The existing prognosis models have several limitations: First, previous studies assume constant time intervals between doctor visits; however, in real world clinical settings, the visits may happen at irregular time intervals. The assumption of constant time intervals will lead to over-optimistic prediction results on specific training data sets while failing to produce generalizable results on new patient data sets. Second, current studies only predict one form of advanced AMD form at a time. Third, computer-based prognosis results are typically not validated on new patients and therefore, it is difficult to evaluate the generalizability of the proposed approaches. Lastly, there is a lack of interpretability of the models and explainability of how a computer-based prognosis determination has been made. The overall objective for this project is to design, develop, and evaluate AMD prognosis prediction models that can detect most relevant images containing AMD biomarkers, manage unevenly spaced sequential optical coherence tomography (OCT) images and predict all advanced AMD forms that can help with the interpretation and explainability of computer-aided prognosis models.