×
  • Select the area you would like to search.
  • ACTIVE INVESTIGATIONS Search for current projects using the investigator's name, institution, or keywords.
  • EXPERTS KNOWLEDGE BASE Enter keywords to search a list of questions and answers received and processed by the ADNI team.
  • ADNI PDFS Search any ADNI publication pdf by author, keyword, or PMID. Use an asterisk only to view all pdfs.
Filter results by:

1800 Total Publications

Small-World Properties in Mild Cognitive Impairment and Early Alzheimer’s Disease: A Cortical Thickness MRI Study.
Zhou, Y., & Lui, Y. W.
2013; Journal ISRN Geriatrics; vol. 2013; no. 6684; pp. 1-11; AWUVFyWqwAl_G9zjEvgr doi:10.1155/2013/542080
Polymorphism in the TOMM40 gene modifies the risk of developing sporadic inclusion body myositis and the age of onset of symptoms
Mastaglia, F. L., Rojana-udomsart, A., James, I., Needham, M., Day, T. J., Kiers, L., … Roses, A. D.
2013; Journal Neuromuscular Disorders; vol. 23; no. 12; pp. 969-74; AWUVGYvTMOwVf_qbJr84 doi:10.1016/j.nmd.2013.09.008
Effects of baseline CSF alpha-synuclein on regional brain atrophy rates in healthy elders, mild cognitive impairment and Alzheimer’s disease.
Mattsson, N., Insel, P., Tosun, D., Zhang, J., Jack Jr., C. R., Galasko, D., … Weiner, M.
2013; Journal PloS One; vol. 8; no. 12; pp. e85443; AWUVGYvTMOwVf_qbJr87 doi:10.1371/journal.pone.0085443
Meta-analysis based SVM classification enables accurate detection of Alzheimer’s disease across different clinical centers using FDG-PET and MRI.
Dukart, J., Mueller, K., Barthel, H., Villringer, A., Sabri, O., & Schroeter, M. L.
2013; Journal Psychiatry Research-Neuroimaging; vol. 212; no. 3; pp. 230-236; AWUVGYvUMOwVf_qbJr89 doi:10.1016/j.pscychresns.2012.04.007
Integrating discretization and association rule-based classification for Alzheimer’s disease diagnosis.
Chaves, R., Ramírez, J., & Górriz, J. M.
2013; Journal Expert Systems with Applications; vol. 40; no. 5; pp. 1571-1578; AWUVIqi8dzjauPDbjhq_ doi:10.1016/j.eswa.2012.09.003
Combining boundary-based methods with tensor-based morphometry in the measurement of longitudinal brain change.
Fletcher, E., Knaack, A., Singh, B., Lloyd, E., Wu, E., Carmichael, O., & DeCarli, C.
2013; Journal IEEE Transactions on Medical Imaging; vol. 32; no. 2; pp. 223-36; AWUVIqi8dzjauPDbjhrA doi:10.1109/TMI.2012.2220153
Brain changes in older adults at very low risk for Alzheimer’s disease.
Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M., & Walhovd, K. B.
2013; Journal Journal of Neuroscience; vol. 33; no. 19; pp. 8237-42; AWUVIqi8dzjauPDbjhrE doi:10.1523/JNEUROSCI.5506-12.2013
Cognitive dysfunction and greater visit-to-visit systolic blood pressure variability.
Epstein, N. U., Lane, K. A., Farlow, M. R., Risacher, S. L., Saykin, A. J., Gao, S., … Gao, S.
2013; Journal Journal of the American Geriatrics Society; vol. 61; no. 12; pp. 2168-2173; AWUVIqi8dzjauPDbjhrF doi:10.1111/jgs.12542
Statistical analysis of longitudinal neuroimage data with Linear Mixed Effects models.
Bernal-Rusiel, J. L., Greve, D. N., Reuter, M., Fischl, B., & Sabuncu, M. R.
2013; Journal Neuroimage; vol. 66; pp. 249-260; AWUVIqi8dzjauPDbjhrJ doi:10.1016/j.neuroimage.2012.10.065
Dimensionality reduced cortical features and their use in predicting longitudinal changes in Alzheimer’s disease.
Park, H., Yang, J. J., Seo, J., & Lee, J. M.
2013; Journal Neuroscience Letters; vol. 550; pp. 17-22; AWUVIqi8dzjauPDbjhrN doi:10.1016/j.neulet.2013.06.042