×
  • Select the area you would like to search.
  • ACTIVE INVESTIGATIONS Search for current projects using the investigator's name, institution, or keywords.
  • EXPERTS KNOWLEDGE BASE Enter keywords to search a list of questions and answers received and processed by the ADNI team.
  • ADNI PDFS Search any ADNI publication pdf by author, keyword, or PMID. Use an asterisk only to view all pdfs.
Filter results by:

1736 Total Publications

Brain development and aging: Overlapping and unique patterns of change.
Tamnes, C. K., Walhovd, K. B., Dale, A. M., Østby, Y., Grydeland, H., Richardson, G., … Fjell, A. M.
2013; Journal Neuroimage; vol. 68; no. 2013; pp. 63-74; doi:10.1016/j.neuroimage.2012.11.039
Glucose metabolism during resting state reveals abnormal brain networks organization in the Alzheimer’s disease and mild cognitive impairment.
Sanabria-Diaz, G., Martinez-Montes, E., Melie-Garcia, L., & Alzheimer’s Disease Neuroimaging, I.
2013; Journal PloS One; vol. 8; no. 7; pp. e68860; doi:10.1371/journal.pone.0068860
Functional activities questionnaire items that best predict disease progression in the clinically normal elderly.
G., M., A., Z., N., L., R., A., J., L., K., J., … D., R.
2013; Journal Alzheimer's and Dementia;
White matter hyperintensities and amyloid are independently associated with entorhinal cortex volume among individuals with mild cognitive impairment.
Guzman, V. a., Carmichael, O. T., Schwarz, C., Tosto, G., Zimmerman, M. E., & Brickman, A. M.
2013; Journal Alzheimer's and Dementia; vol. 9; no. 5; pp. S124-S131; doi:10.1016/j.jalz.2012.11.009
Discriminative Feature Selection for Uncertain Graph Classification.
Kong X, Yu P, Wang X, Ragin A.
2013; Journal arXiv Prepr; vol. 2013; pp. 82-93;
Critical ages in the life course of the adult brain: nonlinear subcortical aging.
Fjell, A. M., Westlye, L. T., Grydeland, H., Amlien, I., Espeseth, T., Reinvang, I., … Walhovd, K. B.
2013; Journal Neurobiology of Aging; vol. 34; no. 10; pp. 2239-47; doi:10.1016/j.neurobiolaging.2013.04.006
Cerebral atrophy in mild cognitive impairment and Alzheimer disease: rates and acceleration.
Leung, K. K., Bartlett, J. W., Barnes, J., Manning, E. N., Ourselin, S., & Fox, N. C.
2013; Journal Neurology; vol. 80; no. 7; pp. 648-54; doi:10.1212/WNL.0b013e318281ccd3
Disease progression model in subjects with mild cognitive impairment from the Alzheimer’s disease neuroimaging initiative: CSF biomarkers predict population subtypes.
Samtani, M. N., Raghavan, N., Shi, Y., Novak, G., Farnum, M., Lobanov, V., … Narayan, V. a.
2013; Journal British Journal of Clinical Pharmacology; vol. 75; no. 1; pp. 146-161; doi:10.1111/j.1365-2125.2012.04308.x
Prediction of Alzheimer’s disease and mild cognitive impairment using cortical morphological patterns.
Wee, C.-Y., Yap, P.-T., & Shen, D.
2013; Journal Human Brain Mapping; vol. 34; no. 12; pp. 3411-3425; doi:10.1002/hbm.22156