×
  • Select the area you would like to search.
  • ACTIVE INVESTIGATIONS Search for current projects using the investigator's name, institution, or keywords.
  • EXPERTS KNOWLEDGE BASE Enter keywords to search a list of questions and answers received and processed by the ADNI team.
  • ADNI PDFS Search any ADNI publication pdf by author, keyword, or PMID. Use an asterisk only to view all pdfs.
Filter results by:

4453 Total Publications

Enriching Amnestic Mild Cognitive Impairment Populations for Clinical Trials: Optimal Combination of Biomarkers to Predict Conversion to Dementia
Yu, P., Dean, R. a, Hall, S. D., Qi, Y., Sethuraman, G., Willis, B. a, … Schwarz, A. J.
PMID: 22796873 ; 2012; Journal Yu, P., Dean, R. a, Hall, S. D., Qi, Y., Sethuraman, G., Willis, B. a, … Schwarz, A. J.; vol. 32; no. 2; pp. 373-85; doi:10.3233/JAD-2012-120832
Prediction of conversion from mild cognitive impairment to Alzheimer’s disease dementia based upon biomarkers and neuropsychological test performance
Ewers, M., Walsh, C., Trojanowski, J. Q., Shaw, L. M., Petersen, R. C., Jack, C. R., … Hampel, H.
PMID: 21159408 ; PMCID:3328615 ; 2012; Journal Neurobiology of Aging; vol. 33; no. 7; pp. 1203-1214.e2.; doi:10.1016/j.neurobiolaging.2010.10.019
Improved classification of Alzheimer’s disease data via removal of nuisance variability.
Koikkalainen, J., Pölönen, H., Mattila, J., van Gils, M., Soininen, H., & Lötjönen, J.
2012; Journal PloS One; vol. 7; no. 2; pp. e31112; doi:10.1371/journal.pone.0031112
Combining structural brain changes improves the prediction of Alzheimer’s disease and mild cognitive impairment.
Zhang, N., Song, X., & Zhang, Y.
2012; Journal Dementia and Geriatric Cognitive Disorders; vol. 33; no. 5; pp. 318-26; doi:10.1159/000339364
Gender Modulates the APOE epsilon 4 Effect in Healthy Older Controls: Convergent Evidence from Functional Brain Connectivity and Spinal Fluid Tau Levels.
Damoiseaux, J. S., Seeley, W. W., Zhou, J., Shirer, W. R., Coppola, G., Karydas, A., … Greicius, M. D.
2012; Journal Journal of Neuroscience; vol. 78; no. 24; pp. 8254-62; doi:10.1523/JNEUROSCI.0305-12.2012
Vascular risk factors and cardiovascular outcomes in the Alzheimer’s disease neuroimaging initiative.
Epstein, N. U., Xie, H., Ruland, S. D., & Pandey, D. K.
2012; Journal American Journal of Alzheimer's Disease and Other Dementias; vol. 27; no. 4; pp. 275-9; doi:10.1177/1533317512449730
Sparse learning and stability selection for predicting MCI to AD conversion using baseline ADNI data.
Ye, J., Farnum, M., Yang, E., Verbeeck, R., Lobanov, V., Raghavan, N., … Narayan, V. a.
2012; Journal BMC Neurology; vol. 12; no. 1; pp. 46; doi:10.1186/1471-2377-12-46
Bioprofile Analysis: A New Approach for the Analysis of Biomedical Data in Alzheimer’s Disease.
Escudero, J., Ifeachor, E., & Zajicek, J. P.
2012; Journal Journal of Alzheimer's Disease;
A computational neurodegenerative disease progression score: method and results with the Alzheimer’s disease Neuroimaging Initiative cohort.
Jedynak, B. M., Lang, A., Liu, B., Katz, E., Zhang, Y., Wyman, B. T., … Prince, J. L.
2012; Journal Neuroimage; vol. 63; no. 3; pp. 1478-86; doi:10.1016/j.neuroimage.2012.07.059
Performance analysis of wave atom transform in texture classification.
Rajeesh, J., Moni, R. S., & Kumar, S. S.
2012; Journal Signal, Image and Video Procesisng; vol. 8; no. 5; pp. 923-930; doi:10.1007/s11760-012-0337-x