×
  • Select the area you would like to search.
  • ACTIVE INVESTIGATIONS Search for current projects using the investigator's name, institution, or keywords.
  • EXPERTS KNOWLEDGE BASE Enter keywords to search a list of questions and answers received and processed by the ADNI team.
  • ADNI PDFS Search any ADNI publication pdf by author, keyword, or PMID. Use an asterisk only to view all pdfs.
Filter results by:

2110 Total Publications

Multi-stage Biomarker Models for Progression Estimation in Alzheimer's Disease
Schmidt-Richberg, A., Guerrero, R., Ledig, C., Molina-Abril, H., Frangi, A. F., Rueckert, D., & The Alzheimer’s Disease Neuroimaging Inititative.
PMID: 26221689 ; 2015; Journal Inf Process Med Imaging; vol. 24; pp. 387-398;
Fusing Heterogeneous Data for Alzheimer's Disease Classification
Pillai, P. S., & Leong, T.-Y.
PMID: 26262148 ; 2015; Journal Studies in Health Technology and Informatics; vol. 216; pp. 731-5; doi:10.1016/j.neuroimage.2014.04.054
Linking Genetics of Brain Changes to Alzheimer's Disease: Sparse Whole Genome Association Scan of Regional MRI Volumes in the ADNI and AddNeuroMed Cohorts
Khondoker, M., Newhouse, S., Westman, E., Muehlboeck, J.-S., Mecocci, P., Vellas, B., … Simmons, A.
PMID: 25649652 ; 2015; Journal Journal of Alzheimer's Disease; vol. 45; no. 3; pp. 851-64; doi:10.3233/JAD-142214
A Multi-Marker Genetic Association Test Based on the Rasch Model Applied to Alzheimer’s Disease
Wang W, Mandel J, Bouaziz J, Commenges D, Nabirotchkine S, Chumakov I, Cohen D, Guedj M; Alzheimer’s Disease Neuroimaging Initiative.
PMID: 26379234 ; PMCID:4574966 ; 2015; Journal PLoS One; vol. 10; no. 9; pp. e0138223; doi:10.1371/journal.pone.0138223
Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease
Zhan L, Zhou J, Wang Y, Jin Y, Jahanshad N, Prasad G, Nir TM, Leonardo CD, Ye J, Thompson PM, For The Alzheimer's Disease Neuroimaging Initiative.
PMID: 25926791 ; PMCID:4396191 ; 2015; Journal Frontiers in Aging Neuroscience; vol. 7; pp. 48;
Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis
Suk, H.-I., Lee, S.-W., & Shen, D.
PMID: 25993900 ; PMCID:4714963 ; 2015; Journal Brain Structure and Function; vol. 221; no. 5; pp. 2569-87; doi:10.1007/s00429-015-1059-y
An Integrated Bioinformatics Approach for Identifying Genetic Markers that Predict Cerebrospinal Fluid Biomarker p-tau181/A􏰀1-42 Ratio in ApoE4-Negative Mild Cognitive Impairment Patients
Sun, Y., Bresell, A., Rantalainen, M., Hoglund, K., Lebouvier, T., & Salter, H.
PMID: 25720397 ; 2015; Journal Journal of Alzheimer's Disease; vol. 45; no. 4; pp. 1061-1076; doi:10.3233/JAD-142118
Functional Activities Questionnaire items that best discriminate and predict progression from clinically normal to mild cognitive impairment
Marshall GA, Zoller AS, Lorius N, Amariglio RE, Locascio JJ, Johnson KA, Sperling RA, Rentz DM, and for the Alzheimer’s Disease Neuroimaging Initiative.
PMID: 26017560 ; PMCID:4111766 ; 2015; Journal Current Alzheimer's Research; vol. 12; no. 5; pp. 493-502; doi:10.3233/JAD-132768
F-FDG PET for the early diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI)
Smailagic, N., Vacante, M., Hyde, C., Martin, S., Ukoumunne, O., & Sachpekidis, C.
PMID: 25629415 ; 2015; Journal The Cochrane Database of Systematic Reviews; vol. 1; pp. CD010632; doi:10.1002/14651858.CD010632.pub2
Connectivity analysis of normal and mild cognitive impairment patients based on FDG and PiB-PET images
Son, S.-J., Kim, J.-H., Seo, J., Lee, J.-M., & Park, H.
PMID: 25896866 ; 2015; Journal Neuroscience Research; vol. 98; pp. 50-8; doi:10.1016/j.neures.2015.04.002