×
  • Select the area you would like to search.
  • ACTIVE INVESTIGATIONS Search for current projects using the investigator's name, institution, or keywords.
  • EXPERTS KNOWLEDGE BASE Enter keywords to search a list of questions and answers received and processed by the ADNI team.
  • ADNI PDFS Search any ADNI publication pdf by author, keyword, or PMID. Use an asterisk only to view all pdfs.
Filter results by:

3740 Total Publications

Manifold regularized multitask feature learning for multimodality disease classification.
Jie, B., Zhang, D., Cheng, B., & Shen, D.
2015; Journal Human Brain Mapping; vol. 36; no. 2; pp. 489-507; doi:10.1002/hbm.22642
An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer’s disease.
Schmitter, D., Roche, A., Maréchal, B., Ribes, D., Abdulkadir, A., Bach-Cuadra, M., … Krueger, G.
2015; Journal Neuroimage: Clinical; vol. 7; pp. 7-17; doi:10.1016/j.nicl.2014.11.001
Head-to-head comparison of two popular cortical thickness extraction algorithms: a cross-sectional and longitudinal study.
Redolfi, A., Manset, D., Barkhof, F., Wahlund, L.-O., Glatard, T., Mangin, J.-F., & Frisoni, G. B.
2015; Journal PloS One; vol. 10; no. 3; pp. e0117692; doi:10.1371/journal.pone.0117692
Technical performance of a novel, fully automated electrochemiluminescence immunoassay for the quantitation of β-amyloid (1–42) in human cerebrospinal fluid
T. Bittner, H. Zetterberg, C. H. Teunissen, R. H. Ostlund, M. Militello, Andreasson, Hubeek, D. Gibson, D. C. Chu and y. Eichenlaub
2015; Journal Alzheimer's & Dementia; vol. 12; no. 5; pp. 517-526; doi:10.1016/j.jalz.2015.09.009
Cortical Amyloid beta Deposition and Current Depressive Symptoms in Alzheimer Disease and Mild Cognitive Impairment
J. K. Chung, E. Plitman, S. Nakajima, M. M. Chakravarty, F. Caravaggio, P. Gerretsen, Y. Iwata, A. Graff-Guerrero and I. Alzheimer's Disease Neuroimaging
2015; Journal J Geriatr Psychiatry Neurol; vol. 29; no. 3; pp. 149-59; doi:10.1177/0891988715606230
Estimating ct image from mri data using structured random forest and auto-context model
T. Huynh, Y. Gao, J. Kang, L. Wang, P. Zhang, J. Lian and Shen
2015; Journal IEEE transactions on medical imaging; vol. 35; no. 1; pp. 174-183; doi:10.1109/TMI.2015.2461533
Novel Statistically-Derived Composite Measures for Assessing the Efficacy of Disease-Modifying Therapies in Prodromal Alzheimer’s Disease Trials: An AIBL Study.
Burnham, S. C., Raghavan, N., Wilson, W., Baker, D., Ropacki, M. T., Novak, G., … Narayan, V. A.
2015; Journal Journal of Alzheimer's Disease; vol. 46; no. 4; pp. 1079-89; doi:10.3233/JAD-143015
Identification of Conversion from Normal Elderly Cognition to Alzheimer’s Disease using Multimodal Support Vector Machine.
Zhan Y, Chen K, Wu X, et al.
2015; Journal Journal of Alzheimer's Disease; vol. 47; no. 4; pp. 1057-67;
MR image super-resolution reconstruction using sparse representation, nonlocal similarity and sparse derivative prior.
Zhang, D., He, J., Zhao, Y., & Du, M.
2015; Journal Computers in Biology and Medicine; vol. 58; no. 0; pp. 130-145; doi:10.1016/j.compbiomed.2014.12.023
Differences in Alzheimer disease clinical trial outcomes based on age of the participants.
Schneider, L. S., Kennedy, R. E., Wang, G., & Cutter, G. R.
2015; Journal Neurology; vol. 84; no. 11; pp. 1121-7; doi:10.1212/WNL.0000000000001376